Home
Class 14
MATHS
I. 5x^(2) + 28x + 15 = 0 II. 6y^(2) + ...

I.` 5x^(2) + 28x + 15 = 0`
II.` 6y^(2) + 35y + 25 = 0`

A

If`x gt y`

B

If`y gt x `

C

If`x ge y`

D

If x = y or a relationship between x and y cannot be established.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \( 5x^2 + 28x + 15 = 0 \) and \( 6y^2 + 35y + 25 = 0 \), we will use the method of factorization. ### Step 1: Solve for \( x \) in the equation \( 5x^2 + 28x + 15 = 0 \) 1. **Identify the product of the coefficient of \( x^2 \) and the constant term**: \[ 5 \times 15 = 75 \] 2. **Find two numbers that multiply to 75 and add up to 28**: The numbers are 25 and 3 because: \[ 25 + 3 = 28 \quad \text{and} \quad 25 \times 3 = 75 \] 3. **Rewrite the equation using these numbers**: \[ 5x^2 + 25x + 3x + 15 = 0 \] 4. **Group the terms**: \[ (5x^2 + 25x) + (3x + 15) = 0 \] 5. **Factor out the common terms**: \[ 5x(x + 5) + 3(x + 5) = 0 \] 6. **Factor by grouping**: \[ (5x + 3)(x + 5) = 0 \] 7. **Set each factor to zero**: \[ 5x + 3 = 0 \quad \Rightarrow \quad x = -\frac{3}{5} \] \[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \] ### Step 2: Solve for \( y \) in the equation \( 6y^2 + 35y + 25 = 0 \) 1. **Identify the product of the coefficient of \( y^2 \) and the constant term**: \[ 6 \times 25 = 150 \] 2. **Find two numbers that multiply to 150 and add up to 35**: The numbers are 30 and 5 because: \[ 30 + 5 = 35 \quad \text{and} \quad 30 \times 5 = 150 \] 3. **Rewrite the equation using these numbers**: \[ 6y^2 + 30y + 5y + 25 = 0 \] 4. **Group the terms**: \[ (6y^2 + 30y) + (5y + 25) = 0 \] 5. **Factor out the common terms**: \[ 6y(y + 5) + 5(y + 5) = 0 \] 6. **Factor by grouping**: \[ (6y + 5)(y + 5) = 0 \] 7. **Set each factor to zero**: \[ 6y + 5 = 0 \quad \Rightarrow \quad y = -\frac{5}{6} \] \[ y + 5 = 0 \quad \Rightarrow \quad y = -5 \] ### Summary of Solutions - The values of \( x \) are \( -\frac{3}{5} \) and \( -5 \). - The values of \( y \) are \( -\frac{5}{6} \) and \( -5 \).

To solve the equations \( 5x^2 + 28x + 15 = 0 \) and \( 6y^2 + 35y + 25 = 0 \), we will use the method of factorization. ### Step 1: Solve for \( x \) in the equation \( 5x^2 + 28x + 15 = 0 \) 1. **Identify the product of the coefficient of \( x^2 \) and the constant term**: \[ 5 \times 15 = 75 \] ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. 15x^(2) - 29x - 14 = 0 II. 6y^(2) - 5y - 25 = 0

I. 5x^(2) + 2x - 3 = 0" "II. 2y^(2) + 7y + 6 = 0

I. 4x^(2) - 32 x + 63 = 0" " II. 2y^(2) - 11y + 15 = 0

I. x^(2) + 28x + 192 = 0 II. y^(2)+16y+48=0

I. 12x^(2) + 17x+ 6 = 0" " II. 6y^(2) + 5y + 1 = 0

I. x ^(2) + 5x + 6 = 0 II. y^(2) + 3y +2 = 0

I 3x^(2) + 4x + 1 = 0" "II. Y^(2) + 5y + 6 = 0