Home
Class 14
MATHS
I. 4x^(2) - 48x + 143 = 0 II. 4y^(2)...

I.` 4x^(2) - 48x + 143 = 0`
` II. 4y^(2) - 52y+165 = 0`

A

If ` x gt y`

B

If ` y gt x`

C

if `x ge y`

D

If x = y or a relationship between x and y cannot be established.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \( I. \ 4x^2 - 48x + 143 = 0 \) and \( II. \ 4y^2 - 52y + 165 = 0 \), we will use the quadratic formula, also known as the Shridhara-Charler formula. The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ### Step 1: Solve for \( x \) 1. Identify coefficients for the first equation: - \( a = 4 \) - \( b = -48 \) - \( c = 143 \) 2. Plug values into the quadratic formula: \[ x = \frac{-(-48) \pm \sqrt{(-48)^2 - 4 \cdot 4 \cdot 143}}{2 \cdot 4} \] 3. Calculate \( b^2 - 4ac \): \[ (-48)^2 = 2304 \] \[ 4 \cdot 4 \cdot 143 = 2288 \] \[ b^2 - 4ac = 2304 - 2288 = 16 \] 4. Substitute back into the formula: \[ x = \frac{48 \pm \sqrt{16}}{8} \] \[ x = \frac{48 \pm 4}{8} \] 5. Calculate the two possible values for \( x \): - \( x_1 = \frac{48 + 4}{8} = \frac{52}{8} = 6.5 \) - \( x_2 = \frac{48 - 4}{8} = \frac{44}{8} = 5.5 \) ### Step 2: Solve for \( y \) 1. Identify coefficients for the second equation: - \( a = 4 \) - \( b = -52 \) - \( c = 165 \) 2. Plug values into the quadratic formula: \[ y = \frac{-(-52) \pm \sqrt{(-52)^2 - 4 \cdot 4 \cdot 165}}{2 \cdot 4} \] 3. Calculate \( b^2 - 4ac \): \[ (-52)^2 = 2704 \] \[ 4 \cdot 4 \cdot 165 = 2640 \] \[ b^2 - 4ac = 2704 - 2640 = 64 \] 4. Substitute back into the formula: \[ y = \frac{52 \pm \sqrt{64}}{8} \] \[ y = \frac{52 \pm 8}{8} \] 5. Calculate the two possible values for \( y \): - \( y_1 = \frac{52 + 8}{8} = \frac{60}{8} = 7.5 \) - \( y_2 = \frac{52 - 8}{8} = \frac{44}{8} = 5.5 \) ### Step 3: Compare values of \( x \) and \( y \) - Values of \( x \): \( 6.5, 5.5 \) - Values of \( y \): \( 7.5, 5.5 \) ### Conclusion - The values \( y_1 = 7.5 \) is greater than \( x_1 = 6.5 \). - The values \( y_2 = 5.5 \) is equal to \( x_2 = 5.5 \). Thus, we can conclude that \( y \) is greater than or equal to \( x \).

To solve the equations \( I. \ 4x^2 - 48x + 143 = 0 \) and \( II. \ 4y^2 - 52y + 165 = 0 \), we will use the quadratic formula, also known as the Shridhara-Charler formula. The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ### Step 1: Solve for \( x \) ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. 4x^(2) - 32 x + 63 = 0" " II. 2y^(2) - 11y + 15 = 0

I. 12x^(2) + 82 x + 140 = 0 II. 16y^(2) + 48y+ 32 = 0

I. x^(2) + 4x+4 = 0 II. y^(2) - 8y + 16 = 0

I. x^(2) + 28x + 192 = 0 II. y^(2)+16y+48=0

I 3x^(2) + 4x + 1 = 0" "II. Y^(2) + 5y + 6 = 0

I. x^(2) +20x + 4 = 50 -25x II. y^(2) - 10y - 24 = 0

(i) x^(2) - 4x + 3 = 0 (ii) y^(2) - 7y+10 = 0

I. x^(2) - 4x+3=0 II. y^(2) - 11y + 18 = 0