Home
Class 14
MATHS
(i) 2P^(2)+9P+9 = 0 (ii) 15Q^(2) + 16...

(i) ` 2P^(2)+9P+9 = 0`
(ii) `15Q^(2) + 16Q + 4 = 0`

A

`P gt Q`

B

`P lt Q`

C

`P ge Q`

D

` P le Q`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations given in the question, we will follow these steps: ### Step 1: Solve the first equation `2P^2 + 9P + 9 = 0` 1. **Identify the coefficients**: Here, \(a = 2\), \(b = 9\), and \(c = 9\). 2. **Calculate the discriminant**: \[ D = b^2 - 4ac = 9^2 - 4 \times 2 \times 9 = 81 - 72 = 9 \] 3. **Since the discriminant is positive, we will have two real and distinct roots**. 4. **Use the quadratic formula**: \[ P = \frac{-b \pm \sqrt{D}}{2a} = \frac{-9 \pm \sqrt{9}}{2 \times 2} = \frac{-9 \pm 3}{4} \] 5. **Calculate the two roots**: - First root: \[ P_1 = \frac{-9 + 3}{4} = \frac{-6}{4} = -\frac{3}{2} \] - Second root: \[ P_2 = \frac{-9 - 3}{4} = \frac{-12}{4} = -3 \] ### Step 2: Solve the second equation `15Q^2 + 16Q + 4 = 0` 1. **Identify the coefficients**: Here, \(a = 15\), \(b = 16\), and \(c = 4\). 2. **Calculate the discriminant**: \[ D = b^2 - 4ac = 16^2 - 4 \times 15 \times 4 = 256 - 240 = 16 \] 3. **Since the discriminant is positive, we will have two real and distinct roots**. 4. **Use the quadratic formula**: \[ Q = \frac{-b \pm \sqrt{D}}{2a} = \frac{-16 \pm \sqrt{16}}{2 \times 15} = \frac{-16 \pm 4}{30} \] 5. **Calculate the two roots**: - First root: \[ Q_1 = \frac{-16 + 4}{30} = \frac{-12}{30} = -\frac{2}{5} \] - Second root: \[ Q_2 = \frac{-16 - 4}{30} = \frac{-20}{30} = -\frac{2}{3} \] ### Step 3: Compare the roots of P and Q We have: - Roots of P: \(P_1 = -\frac{3}{2} \) and \(P_2 = -3\) - Roots of Q: \(Q_1 = -\frac{2}{5} \) and \(Q_2 = -\frac{2}{3}\) ### Step 4: Determine the relationship between P and Q 1. **Convert the roots to decimal for easier comparison**: - \(P_1 = -1.5\), \(P_2 = -3\) - \(Q_1 = -0.4\), \(Q_2 = -0.6667\) 2. **Compare the values**: - \(P_1 = -1.5 < Q_1 = -0.4\) - \(P_2 = -3 < Q_2 = -0.6667\) ### Conclusion From the comparisons, we can conclude that both roots of P are less than both roots of Q. ### Final Answer: **P < Q** ---

To solve the equations given in the question, we will follow these steps: ### Step 1: Solve the first equation `2P^2 + 9P + 9 = 0` 1. **Identify the coefficients**: Here, \(a = 2\), \(b = 9\), and \(c = 9\). 2. **Calculate the discriminant**: \[ D = b^2 - 4ac = 9^2 - 4 \times 2 \times 9 = 81 - 72 = 9 ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

Solve the following quadratic equations by factorisation method : (i) x^(3) - 4x + 3 = 0 (ii) m^(2) - m - 2 = 0 (iii) p^(2) + 9p + 20 =0 (iv) q^(2) + q-12= 0 (v) y^(2) + 2y - 35= 0 (vi) 3x^(2) + 5x= 0 (vii) x^(2) - 7x + 12=0 (viii) x^(2) - 7x - 18 = 0

I. p^(2) + p = 56 II. q^(2) - 17q+ 72 = 0

I. p^(2) - 8p+15 = 0 II. q^(2) - 5q =- 6

I. p^(2) + 12p+35 = 0 II. 2q^(2) + 22q+56 = 0

I. p^(2)+5p+6 = 0 II. q^(2) + 3q + 2 = 0

I. 3p^(2)+10p+8 = 0 II. 2q^(2) + 3q+1 = 0

Let x^(2)-px+q=0, where p in R,q in R have the roots alpha,beta such that alpha+2 beta=0 then -(i)2p^(2)+q=0 (ii) 2q^(2)+p=0( iii) q<0 (iv) none of these

Add : 3p^(2)q^(2) - 4pq + 5, - 10p^(2) q^(2), 15 + 9pq + 7p^(2)q^(2)