Home
Class 14
MATHS
(i) x^(2) -18x+72 = 0 (ii) y^(2)=36...

(i)` x^(2) -18x+72 = 0`
(ii)` y^(2)=36`

A

`x ge y`

B

` x le y`

C

` x gt y`

D

x = y or no relation can be established between x and y.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the equations step by step. ### Part (i): Solve the equation \( x^2 - 18x + 72 = 0 \) 1. **Identify the coefficients**: In the quadratic equation \( ax^2 + bx + c = 0 \), we have: - \( a = 1 \) - \( b = -18 \) - \( c = 72 \) 2. **Use the quadratic formula**: The solutions for \( x \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 3. **Calculate the discriminant**: First, we calculate \( b^2 - 4ac \): \[ b^2 - 4ac = (-18)^2 - 4 \cdot 1 \cdot 72 = 324 - 288 = 36 \] 4. **Substitute into the quadratic formula**: \[ x = \frac{-(-18) \pm \sqrt{36}}{2 \cdot 1} = \frac{18 \pm 6}{2} \] 5. **Calculate the two possible values for \( x \)**: - First solution: \[ x_1 = \frac{18 + 6}{2} = \frac{24}{2} = 12 \] - Second solution: \[ x_2 = \frac{18 - 6}{2} = \frac{12}{2} = 6 \] 6. **Final solutions**: The solutions to the equation \( x^2 - 18x + 72 = 0 \) are: \[ x = 12 \quad \text{and} \quad x = 6 \] ### Part (ii): Solve the equation \( y^2 = 36 \) 1. **Take the square root of both sides**: \[ y = \pm \sqrt{36} \] 2. **Calculate the square root**: \[ y = \pm 6 \] 3. **Final solutions**: The solutions to the equation \( y^2 = 36 \) are: \[ y = 6 \quad \text{and} \quad y = -6 \] ### Summary of Solutions: - For \( x^2 - 18x + 72 = 0 \): \( x = 12 \) and \( x = 6 \) - For \( y^2 = 36 \): \( y = 6 \) and \( y = -6 \)

Let's solve the equations step by step. ### Part (i): Solve the equation \( x^2 - 18x + 72 = 0 \) 1. **Identify the coefficients**: In the quadratic equation \( ax^2 + bx + c = 0 \), we have: - \( a = 1 \) - \( b = -18 \) - \( c = 72 \) ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

(i) x^(2) -10x+21 = 0 (ii) y^(2) -11y+18 = 0

(i) 12x^(2) + 11x + 2 = 0 (ii) 25y^(2) + 15y+2 = 0

(i) x^(2) - 4x + 3 = 0 (ii) y^(2) - 7y+10 = 0

(i) 7x^(2) + 16x - 15 = 0 (ii) 5y^(2)+ 8y - 21 = 0

In the following questions two equation numbered I and II are given You have to solve both equations and . . . . . (i) 5x^(2)-18x+9=0 (ii) 20y^(2)-13y+2=0

(i) x^(2) - 5x-14 = 0 (ii) 2y^(2) +11y + 14 = 0

I. x^(2) - 72 = x" " II. y^(2) = 64

Find the nature of the roots of the equations of given below : (a) x^(2) - 13x + 11 =0 (b ) 18x^(2) - 14x + 17 = 0 (c ) 9x^(2) - 36x + 36 = 0 (d) 3x^(2) - 5x - 8 = 0

I. x^(2) + 72 = 108" "II. Y^(2) = 6

Factorise the following : (i) x^(2)+7x+12 " " (ii) x^(2)+18x+45 " " (iii) x^(2)-7x+12 " "(iv) x^(2)-25x-84