Home
Class 14
MATHS
I. 2x^(2) + 17x + 35 = 0 ...

I. `2x^(2) + 17x + 35 = 0`
II. `8y^(2) - 14y-15 = 0`

A

if`x lt y`

B

if`x le y`

C

if`x gt y`

D

if`x ge y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations provided, we will follow these steps: ### Step 1: Solve the first equation \(2x^2 + 17x + 35 = 0\) 1. **Identify the coefficients**: - \(a = 2\), \(b = 17\), and \(c = 35\). 2. **Factor the quadratic equation**: - We need to find two numbers that multiply to \(a \cdot c = 2 \cdot 35 = 70\) and add to \(b = 17\). - The numbers are \(10\) and \(7\). - Rewrite the equation: \[ 2x^2 + 10x + 7x + 35 = 0 \] - Group the terms: \[ (2x^2 + 10x) + (7x + 35) = 0 \] - Factor by grouping: \[ 2x(x + 5) + 7(x + 5) = 0 \] - Factor out the common term: \[ (2x + 7)(x + 5) = 0 \] 3. **Find the values of \(x\)**: - Set each factor to zero: \[ 2x + 7 = 0 \quad \Rightarrow \quad x = -\frac{7}{2} \] \[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \] ### Step 2: Solve the second equation \(8y^2 - 14y - 15 = 0\) 1. **Identify the coefficients**: - \(a = 8\), \(b = -14\), and \(c = -15\). 2. **Factor the quadratic equation**: - We need to find two numbers that multiply to \(a \cdot c = 8 \cdot (-15) = -120\) and add to \(b = -14\). - The numbers are \(-20\) and \(6\). - Rewrite the equation: \[ 8y^2 - 20y + 6y - 15 = 0 \] - Group the terms: \[ (8y^2 - 20y) + (6y - 15) = 0 \] - Factor by grouping: \[ 4y(2y - 5) + 3(2y - 5) = 0 \] - Factor out the common term: \[ (4y + 3)(2y - 5) = 0 \] 3. **Find the values of \(y\)**: - Set each factor to zero: \[ 4y + 3 = 0 \quad \Rightarrow \quad y = -\frac{3}{4} \] \[ 2y - 5 = 0 \quad \Rightarrow \quad y = \frac{5}{2} \] ### Step 3: Compare the values of \(x\) and \(y\) - The values of \(x\) are \(x = -\frac{7}{2}\) and \(x = -5\). - The values of \(y\) are \(y = -\frac{3}{4}\) and \(y = \frac{5}{2}\). ### Conclusion - Since \(y = \frac{5}{2}\) is greater than both values of \(x\) (as \(-\frac{3}{4} > -5\) and \(-\frac{3}{4} > -\frac{7}{2}\)), we conclude that \(y > x\). ### Final Answer The values of \(x\) are \(-\frac{7}{2}\) and \(-5\), and the values of \(y\) are \(-\frac{3}{4}\) and \(\frac{5}{2}\). The relation is \(y > x\). ---

To solve the equations provided, we will follow these steps: ### Step 1: Solve the first equation \(2x^2 + 17x + 35 = 0\) 1. **Identify the coefficients**: - \(a = 2\), \(b = 17\), and \(c = 35\). 2. **Factor the quadratic equation**: ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. x^(2) - 6x = 7" " II. 2y^(2) + 13y + 15 = 0

I. 12x^(2) + 17x+ 6 = 0" " II. 6y^(2) + 5y + 1 = 0

I. x^(2) + 4x+4 = 0 II. y^(2) - 8y + 16 = 0

I. 3x^(2) - 7x+2 = 0" " II. 2y^(2) - 11y + 15 = 0

I. 4x^(2) - 32 x + 63 = 0" " II. 2y^(2) - 11y + 15 = 0

I. 10x^(2) - 7x + 1= 0" " II. 35y^(2) - 12y + 1 = 0

I. 15x^(2) - 2x-1=0 II. y^(2) - 9y+14 = 0

I. 15x^(2) - 29x - 14 = 0 II. 6y^(2) - 5y - 25 = 0

I. x^(2) - 7x + 10 = 0" "II. Y^(2) - 12y + 35 = 0