Home
Class 10
MATHS
If p^(2) + q^(2) = 14pq, then prove t...

If `p^(2) + q^(2) = 14pq`, then prove that `log((p+q)/(4))=(1)/(2)[logp+logq]`

Promotional Banner

Similar Questions

Explore conceptually related problems

(p-q)^(2)+4pq

If log_5p=a and log_2q=a , then prove that (p^4q^4)/(100)=100^(2a-1)

If log_5p=a and log_2q=a , then prove that (p^4q^4)/(100)=100^(2a-1)

If log_5p=a and log_2q=a , then prove that (p^4q^4)/(100)=100^(2a-1)

If P^2 + 4 Q^2 = 4PQ , then determine P : Q

If log_(5)p = a and log_(2)q=a , then prove that (p^(4)q^(4))/(100) = 100^(2a-1)

If log_(5)p = a and log_(2)q=a , then prove that (p^(4)q^(4))/(100) = 100^(2a-1)

If Sin^(-1)(2p)/(1+p^(2)) - Cos^(-1)((1-q^(2))/(1+q^(2))) = Tan^(-1) (2x)/(1-x^(2)) , then prove that x = (p-q)/(1+pq)

If x prop yz^2 ,y prop pq^2 and zoo q/p then prove that q^4 prop px .

5pq(p^2 - q^2) -: 2p(p+q)