Home
Class 12
MATHS
If y=e^(msin^-1x)(-1lexle1), Prove that,...

If `y=e^(msin^-1x)(-1lexle1)`, Prove that,
`(1-x^2)(d^2y)/(dx^2)-xdy/dx=m^2y`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(acos^-1x)(-1lexle1) , show that , (1-x^2)(d^2y)/(dx^2)-xdy/dx-a^2y=0

If y=e^(m"sin"^(-1)x) , prove that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/(dx)=m^(2)y

If y=e^(m sin^(-1)x) prove that (1-x^(2))((d^(2)y)/(dx^(2)))-x(dy)/(dx)=m^(2)y

If y=e^m\ sin^((-1)x) , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-m^2y=0 .

If y=e^(m)sin^((-1)x), prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-m^(2)y=0

Let y=(sin^-1x)^2+(cos^-1x)^2 , show that, (1-x^2)(d^2y)/(dx^2)-xdy/dx=4

If y=e^(msin^(-1)x) prove that (1-x^2)((d^2y)/dx^2)-x(dy)/dx=m^2y

If y=e^("mcos"^(-1)x) , prove that: (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=m^(2)y

If y = e^(acos^-1x), -1lexle1 , show that (1-x^2)(d^2y)/dx^2 - x(dy/dx) - a^2y = 0

If y=sin (2sin^-1x) , Prove that, (1-x^2)(d^2y)/(dx^2)=xdy/dx-4y .