Home
Class 12
MATHS
यदि f ( x ) = (|x - 1|)/(x - 1 ) तब...

यदि ` f ( x ) = (|x - 1|)/(x - 1 ) ` तब सिद्ध कीजिये कि ` lim _ ( x to 1 ) f (x) ` अस्तित्वहीन है |

Promotional Banner

Similar Questions

Explore conceptually related problems

यदि (x-1)^(3) (x+1) lt 0 तब x in

For the function f(x) = 2 . Find lim_(x to 1) f(x)

For the function f(x) = 2 . Find lim_(x to 1) f(x)

If f(x)={:{(2x+1,x le 0),(3(x+1),x gt 0):} . Find lim_(x to 0) f(x) and lim_(x to 1) f(x) .

यदि x + (1)/(x) = 2 है तब x ^(2) + (1)/( x ^(2)) = ?

lim_(x rarr oo) (1+f(x))^(1/f(x))

Statement 1: lim_ (x rarr oo) ((1 ^ (2)) / (x ^ (3)) + (2 ^ (2)) / (x ^ (3)) + (3 ^ (2)) / (x ^ (3)) + ...... + (x ^ (2)) / (x ^ (3))) = lim_ (x rarr oo) (1 ^ (2)) / (x ^ ( 3)) + lim_ (x rarr oo) (2 ^ (2)) / (x ^ (3)) + ...... + lim_ (x rarr a) (x ^ (2)) / (x ^ (3)) lim_ (x rarr a) (f_ (1) (x) + f_ (2) (x) + ... + f_ (n) (x)) = lim_ (x rarr a) f_ (1) (x) + lim_ (x rarr a) f (x) + ...... + lim_ (x rarr a) f_ (n) (x)

यदि f' (a) विधमान है तब lim_(x to a) (x f(a)-a f(x))/(x-a)=

If f(x)=(|x-1|)/(x-1) prove that lim_(x rarr1)f(x) does not exist.