Home
Class 12
MATHS
int e^(ax)"cos bx dx"...

`int e^(ax)"cos bx dx"`

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(ax)cos(bx+c)dx

int(e^(ax).cosbx)dx

If u=inte^(ax)cos bx dx and v=int e^(ax)sinbx dx , show that, (a^(2)+b^(2))(u^(2)+v^(2))=e^(2ax)

If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=

If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=

If u=inte^(ax)cos bx dx and v=int e^(ax)sinbx dx , show that, "tan"^(-1)(v)/(u)+"tan"^(-1)(b)/(a)=bx .

Method of integration by parts : If u=inte^(ax)cos bx dx and v= int e^(ax) sin bx dx then (a^(2)+b^(2))(u^(2)+v^(2))=....

int(e^(b)cos bx)dx=?

If int e^(ax) sin bx dx=(e^(ax))/(sqrt(a^(2)+b^(2)))sin(bx+m)+c , then the value of m is-