Home
Class 12
MATHS
If p(1),p(2),p(3) be the length of per...

If `p_(1),p_(2),p_(3)` be the length of perpendiculars from the points `(m^(2),2m),(mm',m+m')` and `(m^('2),2m')` respectively on the line `xcosalpha+ysinalpha+(sin^(2)alpha)/(cosalpha)=0` then `p_(1),p_(2),p_(3)` are in:

Promotional Banner

Similar Questions

Explore conceptually related problems

If x cos alpha+ y sin alpha=p , where p=(-sin^(2) alpha)/(cos alpha) be a straight, line, prove that the perpendicular p_(1), p_(2) and p_(3) on this line drawn from the point (m^(2), 2m), (mm', m+m' and) ((m')^(2), 2m') respectively, are in geometric progression. (m gt 0, m gt 0, 0 lt alpha lt 90^(@)) .

If p and p^' are the length of perpendicular drawn from the origin upon the lines xsecalpha + ycosecalpha = 0 and xcosalpha - ysinalpha - acos2alpha = 0 Prove that , 4p^2 + p^('2) = a^2

p(m) = m^(2)-3m+1 , find the value of p(1).

p(m) = m^(2)-3m+1 , find the value of p(-1).

If p(m)=m^(2)-3m+1 , then find the value of p(1) and p(-1) .

If p(m)=m^(2)-3m+1 , then find the value of p(1) and p(-1) .

If p(m)=m^(2)-3m+1 , then find the value of p(1) and p(-1) .

If p(m)=m^(2)-3m+1 , then find the value of p(1) and p(-1) .