Home
Class 12
MATHS
Let x=(sum(n=1)^(44) cos n^(@))/(sum(n=1...

Let `x=(sum_(n=1)^(44) cos n^(@))/(sum_(n=1)^(44) sin n^(@))` , find the greatest integer that does not exceed.

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n = 1)^(1000) int_(n - 1)^(n) e^(x-[x]) dx , whose [x] is the greatest integer function, is :

sum_(i=1)^(n)cos theta_(i)=n then sum_(i=1)^(n)sin theta_(i)

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

Let S_(n)=sum_(r=1)^(oo)(1)/(n^(r)) and sum_(n=1)^(k)(n-1)S_(n)=5050, then k=

Evaluate sum_(r=1)^(n-1) cos^(2) ((rpi)/(n)) .

Evaluate sum_(r=1)^(n-1) cos^(2) ((rpi)/(n)) .

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)