Home
Class 12
MATHS
" 1."f(x)=|x|,quad x in[-1,1]...

" 1."f(x)=|x|,quad x in[-1,1]

Promotional Banner

Similar Questions

Explore conceptually related problems

Explain why Rolle's theorem is not applicable to the following functions in the respective intervals. f(x)=|1/x|,x in[-1,1]

Discuss the continuity of the f(x) at the indicated points: f(x)=|x|||x-1| at x=0, 1 f(x)=|x-1|+|x+1| at x=-1,1

Discuss the continuity of the f(x) at the indicated points: f(x)=|x|||x-1| at x=0,1f(x)=|x-1|+|x+1| at x=-1,1

Verify mean value theorem for each of the functions: f(x) = (1)/(4x-1), x in [1, 4]

Find lim_(xrarr1) f(x) where f(x)= {[(x^2-1)/(x-1), x ne 1],[1, x=1]:}

f(x)={(1-x^(n))/(1-x),quad x!=1n-1,quad x=1quad n in N at x=1

If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), then find the value of int_(-3)^5g(x)dx .

If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), then find the value of int_(-3)^5g(x)dx .

If f(x)={1-|x|,|x|lt=1 0,|x|>1'a n dg(x)=f(x-1)+f(x+1), find the value of int_(-3)^3g(x)dxdot