Home
Class 12
MATHS
Let O, O' and G be the circumcentre, ort...

Let O, O' and G be the circumcentre, orthocentre and centroid of a `Delta ABC` and S be any point in the plane of the triangle.
Statement -1: `vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O)`
Statement -2: `vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then vec(SA) + vec(SB)+vec(SC)=

Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then vec(SA) + vec(SB)+vec(SC)=

Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then vec(SA) + vec(SB)+vec(SC)=

If S is the circumcentre, O is the orthocentre of Delta ABC then vec(O)A + vec(O)B + vec(O)C =

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=