Home
Class 11
MATHS
If the equation a x^2+b x+c=0,a ,b ,c , ...

If the equation `a x^2+b x+c=0,a ,b ,c , in R` have none-real roots, then `c(a-b+c)>0` b. `c(a+b+c)>0` c. `c(4a-2b+c)>0` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If the equation a x^2+b x+c=0,a ,b ,c , in R have none-real roots, then a. c(a-b+c)>0 b. c(a+b+c)>0 c. c(4a-2b+c)>0 d. none of these

If the equation ax^(2)+bx+c=0,a,b,c,in R have none- real roots,then c(a-b+c)>0 b.c(a+b+c)>0 c.c(4a-2b+c)>0 d. none of these

If a x^2+b x+c=0,a ,b ,c in R has no real zeros, and if c 0 (c) a >0

If a x^2+b x+c=0,a ,b ,c in R has no real zeros, and if c 0 (c) a >0

If the equation a x^2+2b x-3c=0 has no real roots and ((3c)/4) 0 c=0 (d) None of these

If the roots of equation ax^(2)+bx+c=0;(a,b,c in R and a!=0) are non-real and a+c>b. Then

If the equations a x^2+b x+c=0a n dx^3+3x^2+3x+2=0 have two common roots, then a. a=b=c b. a=b!=c c. a=-b=c d. none of these

If the equations a x^2+b x+c=0 and x^3+3x^2+3x+2=0 have two common roots, then a. a=b=c b. a=b!=c c. a=-b=c d. none of these.

If the equation a x^2+b x+c=x has no real roots, then the equation a(a x^2+b x+c)^2+b(a x^2+b x+c)+c=x will have a. four real roots b. no real root c. at least two least roots d. none of these