Home
Class 12
MATHS
If x^(logy)=logx then find dy/dx....

If `x^(logy)=logx` then find `dy/dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(logx)+(logx)^x then find (dy)/(dx)

If y=x^(logx)+(logx)^x then find (dy)/(dx)

If y=(logx)/(x) , then find (dy)/(dx)

y= (logx)^(x)-x^(logx) find dy/dx

If xa n dy are real numbers such that 2log(2y-3x)=logx+logy ,then find x/y .

If xa n dy are real numbers such that 2log(2y-3x)=logx+logy ,then find x/y .

If xa n dy are real numbers such that 2log(2y-3x)=logx+logy ,then find x/y .

If y=x^((logx)^log(logx)) then (dy)/(dx)=