Home
Class 7
MATHS
(x)/(2)-5=(x)/(3)+(1)/(2)...

`(x)/(2)-5=(x)/(3)+(1)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the roots of the equations. Q. (2x)/(x-4)+(2x-5)/(x-3)=8(1)/(2) .

Solve: (2x)/(5)-(3)/(2)=(x)/(2)+1 . Check the result.

(1)/(4)(x-5)-(2)/(3)(x-2)=(1)/(3)

Find the value of the polynomial 4x^(2)-5x+3 ,when x=(1)/(2)

solve for x (2x-5)/(3x-1)=(2x-1)/(3x+2)

The integral int(2x^(12)+5x^(9))/([x^(5)+x^(3)+1]^(3))*dx is equal to- (A) (x^(10))/(2(x^(5)+x^(3)+1)^(2))(B)(x^(5))/(2(x^(5)+x^(3)+1)^(2))(C)-(x^(10))/(2(x^(5)+x^(3)+1)^(2))(D)-(x^(5))/(2(x^(5)+x^(3)+1)^(2))

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to: (1)(-x^(5))/((x^(5)+x^(3)+1)^(2))+C(2)(x^(5)x^(3))/(2(x^(5)+x^(3)+1)^(2))+C(3)(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C(4)(-x^(3)+x^(3))/(2(x^(5)+x^(3)+1)^(2))+C where C is an arbitrary constant.

int(3x^(1/2)+(5)/(3)x^(-1/2))dx

(x+((x^(3)-1)^((1)/(2)))/(2))^(5)+(x-((x^(3)-1)^((1)/(2)))/(2))^(5) is a polynomial of degree a.5b.6c.7d.8])

Differentiate the following functions with respect to x (i) (2x+3)/(x^2-5) (ii) (x+3)/(x^2+1)