Home
Class 10
MATHS
If alpha, beta, gamma are the zeros of ...

If `alpha, beta, gamma` are the zeros of the polynomial ` x^(3)-6x^(2) -x+ 30` then `(alpha beta+beta gamma + gamma alpha)`= ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta , gamma are the zeros of the polynomial x^(3)-6x^(2)-x+30 then the value of (alpha beta+beta gamma+gamma alpha) is

If alpha, beta, gamma are the zeros of the polynomial 2x^(3)+ x^(2) - 13 x+ 6 then alpha beta gamma = ?

If alpha, beta , gamma are the zeros of the polynomial x^(3) - px^(2) + qx - r then 1/(alpha beta) + 1/(beta gamma) + 1/(gamma alpha) = …………..

If alpha,beta,gamma be the zeroes of the polynomial x^3-6x^2-x+30 , then alphabeta+betagamma+gammaalpha =?

If alpha,beta,gamma are the zeros of the polynomial f(x)=x^(3)-px^(2)+qx-r, then (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha)=

If alpha, beta, gamma be the zeros of the polynomial p(x) such that (alpha+beta+gamma) = 3, (alpha beta+beta gamma+gamma alpha) =- 10 and alpha beta gamma =- 24 then p(x) = ?

If alpha,beta, gamma are the roots of 4x^(3) - 6x^(2) + 7x + 3 = 0 then alpha beta + alpha beta + alpha gamma =

If alpha, beta, gamma are the roots of x^(3) + x^(2) + x + 1 = 0 then (alpha - beta)^(2) + (beta - gamma)^(2) + (gamma - alpha)^(2) =

If alpha,beta,gamma are the zeroes of the polynomial f(x)=2x^(3)+6x^(2)-4x+9, find the value of (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha)

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =