Home
Class 12
MATHS
" (i) If "y=x^(y)," prove that "x(dy)/(d...

" (i) If "y=x^(y)," prove that "x(dy)/(dx)=(y^(2))/(1-y log x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = x^y , prove that (dy)/(dx) = (y^2)/(x(1 - y log x))

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If y^(x)=e^(y-x)" prove that, " (dy)/(dx)=((logey)^(2))/(log y) .

if y=log x^(x) prove that (dy)/(dx)=1+log x