Home
Class 12
MATHS
If f(x)=ax^(2)+bx+c and f(-1) ge -4, f(1...

If `f(x)=ax^(2)+bx+c` and `f(-1) ge -4`, `f(1) le 0` and `f(3) ge 5`, then the least value of `a` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = ax^2 + bx + c and f(0) = 5 , f(1) = 7 , and f(-1) = 3 then find the value of 3a+5b-c .

If f(x)=ax^(2)+bx+c, f(-1) gt (1)/(2), f(1) lt -1 and f(-3)lt -(1)/(2) , then

If f(x)=ax^(2)+bx+c, f(-1) gt (1)/(2), f(1) lt -1 and f(-3)lt -(1)/(2) , then

If f(x)=ax^(2)+bx+c and f(0) = 2, f(1) = 1, f(4) = 6, then find the valuse of a, b and c.

If f(x) = ax^(2) + bx + x and f(2) = 1, f(3) = 6, f(-1) = 10, then find the value of f'(1).

Let f(x)=ax^(2)+bx+c, if f(-1) -1,f(3)<-4 and a!=0 then

If f(x) = ax^(2) + bx + c is such that |f(0)| le 1, |f(1)| le 1 and |f(-1)| le 1 , prove that |f(x)| le 5//4, AA x in [-1, 1]

If f(x) = ax^(2) + bx + c is such that |f(0)| le 1, |f(1)| le 1 and |f(-1)| le 1 , prove that |f(x)| le 5//4, AA x in [-1, 1]