Home
Class 12
MATHS
If x+y+z=0, |x|=|y|=|z|=2 and theta is a...

If `x+y+z=0, |x|=|y|=|z|=2 and theta` is angle between y and z, then the value of `cosec^(2)theta+cot^(2)theta` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(x)+vec(y)+vec(z)=0 and |vec(x)|=|vec(y)|=|vec(z)|=2 If the angle between vec(y) and vec(z) and theta . Then cosec^(2)theta+cot^(2)theta = …………..

x=sec theta-tan theta, y=cosec theta+cot theta, then

If theta is the angle between the planes 2x-y+2z=3 and 6x-2y+3z=5 , then cos theta=?

If theta is the angle between the liens x^(2)-3xy+2y^(2)+lamda x-5y+2=0 then csc^(2)theta=

If the angle between the plane x-3 y+2 z=1 and the line x-1/2=y-1/1=z-1/-3 is theta , then the value of cosec theta is

If x =p cosec theta and y =q cot theta , then the value of (x^2)/(p^2)- (y^2)/(q^2) is

If 2y cos theta =x sin theta and 2x sec theta -y cosec theta =3, then x ^(2) +4y^(2)=

Eliminate theta, if x = 3 cosec theta + 4 cot theta, y = 4 cosec theta - 3 cot theta .