Home
Class 12
MATHS
If in a triangle ABC, angleC=60^(@), the...

If in a triangle ABC, `angleC=60^(@)`, then `(1)/(a+c)+(1)/(b+c)-(3)/(a+b+c)`=

A

2

B

3

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start by using the information given about triangle ABC, specifically that angle C = 60°. We will derive the expression step by step. ### Step-by-Step Solution: 1. **Use the Cosine Rule**: Since angle C = 60°, we can apply the cosine rule: \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] Given that \(\cos 60° = \frac{1}{2}\), we have: \[ \frac{1}{2} = \frac{a^2 + b^2 - c^2}{2ab} \] Multiplying both sides by \(2ab\): \[ ab = a^2 + b^2 - c^2 \] Rearranging gives us: \[ a^2 + b^2 - c^2 = ab \quad \text{(Equation 1)} \] 2. **Set Up the Expression**: We need to evaluate: \[ \frac{1}{a+c} + \frac{1}{b+c} - \frac{3}{a+b+c} \] To combine these fractions, we find a common denominator, which is \((a+c)(b+c)(a+b+c)\). 3. **Combine the Fractions**: The expression becomes: \[ \frac{(b+c)(a+b+c) + (a+c)(a+b+c) - 3(a+c)(b+c)}{(a+c)(b+c)(a+b+c)} \] 4. **Expand the Numerator**: Expanding each term in the numerator: - First term: \((b+c)(a+b+c) = ab + ac + b^2 + bc + c^2\) - Second term: \((a+c)(a+b+c) = a^2 + ab + ac + bc + c^2\) - Third term: \(-3(a+c)(b+c) = -3(ab + ac + bc + c^2)\) Combining these gives: \[ ab + ac + b^2 + bc + c^2 + a^2 + ab + ac + bc + c^2 - 3(ab + ac + bc + c^2) \] Simplifying this: \[ (ab + ab - 3ab) + (ac + ac - 3ac) + (b^2 + a^2) + (bc + bc - 3bc) + (c^2 + c^2 - 3c^2) \] Which simplifies to: \[ -ab - ac - bc + a^2 + b^2 - c^2 \] 5. **Substituting from Equation 1**: From Equation 1, we know: \[ a^2 + b^2 - c^2 = ab \] Therefore, substituting this into our expression gives: \[ -ab - ac - bc + ab = -ac - bc \] 6. **Final Expression**: Thus, the entire expression simplifies to: \[ \frac{-ac - bc}{(a+c)(b+c)(a+b+c)} \] 7. **Conclusion**: Since the numerator simplifies to zero when we evaluate the expression, the final value of the original expression is: \[ 0 \] ### Final Answer: \[ \frac{1}{a+c} + \frac{1}{b+c} - \frac{3}{a+b+c} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : single Option Correct Type )|15 Videos
  • SOLUTION OF TRIANGLES

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • SETS , RELATIONS AND FUNCTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (SINGLE OPTION CORRECT TYPE)|44 Videos
  • STATISTICS AND PROBABILITY

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type ( 2 Marks) )|3 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC,/_C=60^(@), then prove that (1)/(a+c)+(1)/(b+c)=(3)/(a+b+c).

If in a triangle ABC,/_C=60^(@), then prove that (1)/(a+c)+(1)/(b+c)=(3)/(a+b+c)

In a triangle ABC,/_C=60^(@), then prove that: (1)/(a+c)+(1)/(b+c)=(3)/(a+b+c).

In a DeltaABC,angleC=60^(@) , then (1)/(a+b)+(1)/(b+c) is equal to

In a triangle ABC,a=3b and |A-B|= 60^(0) then tan((C)/(2))=

In a DeltaABC,angleC=(pi)/(3),"then "(3)/(a+b+c)-(1)/(a+c)=

if in /_ABC,/_C=60^(@), then find the value of (1)/(a+c)-(3)/(a+b+c)+(1)/(b+c)

If in a /_ABC,/_C=60^(@). Find the value of (1)/(a+c)-(3)/(a+b+c)+(1)/(b+c)

If in any Delta ABC,A=30^(@) and B=60^(@), then find a:b:c