Home
Class 12
MATHS
If r(1),r(2)andr(3) are exradii of any ...

If `r_(1),r_(2)andr_(3)` are exradii of any triangle , then `r_(1)r_(2)+r_(2)r_(3)+r_(3)r_(1)` is equal to

A

`(Delta)/(r)`

B

`(Delta^(2))/(r^(2))`

C

`(r)/(Delta)`

D

`(r^(2))/(Delta^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( r_1 r_2 + r_2 r_3 + r_3 r_1 \) in terms of the area \( \Delta \) of the triangle and its semi-perimeter \( s \). ### Step-by-Step Solution: 1. **Define the exradii**: The exradii \( r_1, r_2, r_3 \) of a triangle can be expressed as: \[ r_1 = \frac{\Delta}{s - a}, \quad r_2 = \frac{\Delta}{s - b}, \quad r_3 = \frac{\Delta}{s - c} \] where \( a, b, c \) are the lengths of the sides of the triangle and \( s \) is the semi-perimeter given by \( s = \frac{a + b + c}{2} \). 2. **Calculate \( r_1 r_2 + r_2 r_3 + r_3 r_1 \)**: We need to calculate: \[ r_1 r_2 + r_2 r_3 + r_3 r_1 \] Substituting the values of \( r_1, r_2, r_3 \): \[ r_1 r_2 = \left(\frac{\Delta}{s - a}\right)\left(\frac{\Delta}{s - b}\right) = \frac{\Delta^2}{(s - a)(s - b)} \] \[ r_2 r_3 = \left(\frac{\Delta}{s - b}\right)\left(\frac{\Delta}{s - c}\right) = \frac{\Delta^2}{(s - b)(s - c)} \] \[ r_3 r_1 = \left(\frac{\Delta}{s - c}\right)\left(\frac{\Delta}{s - a}\right) = \frac{\Delta^2}{(s - c)(s - a)} \] Therefore, \[ r_1 r_2 + r_2 r_3 + r_3 r_1 = \frac{\Delta^2}{(s - a)(s - b)} + \frac{\Delta^2}{(s - b)(s - c)} + \frac{\Delta^2}{(s - c)(s - a)} \] 3. **Combine the fractions**: The common denominator for these fractions is \( (s - a)(s - b)(s - c) \). Thus, we can write: \[ r_1 r_2 + r_2 r_3 + r_3 r_1 = \Delta^2 \left( \frac{(s - c) + (s - a) + (s - b)}{(s - a)(s - b)(s - c)} \right) \] Simplifying the numerator: \[ (s - c) + (s - a) + (s - b) = 3s - (a + b + c) = 3s - 2s = s \] Therefore, we have: \[ r_1 r_2 + r_2 r_3 + r_3 r_1 = \Delta^2 \cdot \frac{s}{(s - a)(s - b)(s - c)} \] 4. **Express in terms of \( r \)**: We know that the inradius \( r \) is given by: \[ r = \frac{\Delta}{s} \] Thus, \( \Delta = r \cdot s \). Substituting this into our expression: \[ r_1 r_2 + r_2 r_3 + r_3 r_1 = (r \cdot s)^2 \cdot \frac{s}{(s - a)(s - b)(s - c)} = \frac{r^2 s^3}{(s - a)(s - b)(s - c)} \] 5. **Final Result**: Therefore, we conclude that: \[ r_1 r_2 + r_2 r_3 + r_3 r_1 = \frac{r^2 s^3}{(s - a)(s - b)(s - c)} \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : single Option Correct Type )|15 Videos
  • SOLUTION OF TRIANGLES

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • SETS , RELATIONS AND FUNCTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (SINGLE OPTION CORRECT TYPE)|44 Videos
  • STATISTICS AND PROBABILITY

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type ( 2 Marks) )|3 Videos

Similar Questions

Explore conceptually related problems

In any triangle, the minimum value of r_(1) r_(2) r_(3) //r^(3) is equal to

In triangle ABC, 2b=a+c .If r_(1),r_(2),r_(3) be the exradii of the triangle,then (1)/(r_(1)),(1)/(r_(2)) and (1)/(r_(3)) are in

In a triangle ABC, if (r_(1)+r_(2))(r_(2)+r_(3))(r_(3)+r_(1))4RK then k=

In a triangle ABC,(r_(1)-r)(r_(2)-r)(r_(3)-r) is equal to -

In triangle ABC,(r_(1)+r_(2)+r_(3)-r) is equal to

In triangle ABC, if r_(1) = 2r_(2) = 3r_(3) , then a : b is equal to

r+r_(3)+r_(1)-r_(2)=

In triangle ABC, if r_(1)+r_(2)=3R and r_(2)+r_(3)=2R , then

In a triangle ABC,r,r_(1),r_(2),r_(3), are the radii of in circle and ex circles and P_(1),P_(2),P_(3), are altitudes of triangle ABC .Then (1)/(P_(1))+(1)/(P_(2))+(1)/(P_(3)) is equal to