Home
Class 12
MATHS
In triangle ABC , if AB=2,BC=4 and AC=5,...

In triangle ABC , if `AB=2,BC=4 and AC=5,` then the value of `(sinA-sinB)/(sinC)` is equal to

A

`1//2`

B

`-1//2`

C

`2//5`

D

`-2//5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the sine rule and the properties of triangles. Given: - \( AB = c = 2 \) - \( BC = a = 4 \) - \( AC = b = 5 \) We need to find the value of \( \frac{\sin A - \sin B}{\sin C} \). ### Step 1: Use the Sine Rule According to the sine rule: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] From this, we can express \( \sin A \), \( \sin B \), and \( \sin C \): \[ \sin A = \frac{a \cdot \sin C}{c} \] \[ \sin B = \frac{b \cdot \sin C}{c} \] ### Step 2: Substitute Values Substituting the known values into the equations: \[ \sin A = \frac{4 \cdot \sin C}{2} = 2 \sin C \] \[ \sin B = \frac{5 \cdot \sin C}{2} = \frac{5}{2} \sin C \] ### Step 3: Calculate \( \sin A - \sin B \) Now, we can find \( \sin A - \sin B \): \[ \sin A - \sin B = 2 \sin C - \frac{5}{2} \sin C \] \[ = \left(2 - \frac{5}{2}\right) \sin C = \left(\frac{4}{2} - \frac{5}{2}\right) \sin C = -\frac{1}{2} \sin C \] ### Step 4: Substitute into the Original Expression Now we substitute \( \sin A - \sin B \) into the expression \( \frac{\sin A - \sin B}{\sin C} \): \[ \frac{\sin A - \sin B}{\sin C} = \frac{-\frac{1}{2} \sin C}{\sin C} \] \[ = -\frac{1}{2} \] ### Final Answer Thus, the value of \( \frac{\sin A - \sin B}{\sin C} \) is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : single Option Correct Type )|15 Videos
  • SOLUTION OF TRIANGLES

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • SETS , RELATIONS AND FUNCTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (SINGLE OPTION CORRECT TYPE)|44 Videos
  • STATISTICS AND PROBABILITY

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type ( 2 Marks) )|3 Videos

Similar Questions

Explore conceptually related problems

If a DeltaABC , the value of sinA+sinB+sinC is

In two triangle ABC and DEF, AB= DE ,BC=DF and AC =Ef then

If the median of triangle ABC through A is perpendicular AB, then the value of sinA cosB + 2sinB cosA is equal to

In triangle ABC, AB = 5. BC = 9 and AC =7. The value of tan((A-B)/2)/tan((A+B)/2) is

In triangle ABC,/_B=90^(@),AC+BC=25 and AB=5, determine the value of sin A,cos A and tan A

In right triangle ABC , AB=BC , then angleA is equal to

In a triangle ABC, if AB=3, BC=4, CA=5. Then the surface area of the sphere having a radius equal to the inradius of the triangle is.

In triangle ABC , right angled at B, if tanA =1/2 , then the value of (sinA(cosC + cosA))/(cosC(sinC - sinA)) is: triangle ABC में B एक समकोण है यदि tanA =1/2 तो (sinA(cosC + cosA)) /(cosC(sinC - sinA)) का मान क्या होगा ?

In triangle ABC, (sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to