Home
Class 12
MATHS
The value of cos^(-1)(1/2)-2 sin^(-1)(1/...

The value of `cos^(-1)(1/2)-2 sin^(-1)(1/2)+3cos^(-1)((-1)/(sqrt(2)))-4 tan^(-1)(-1)` is equal to

A

`7 pi//4`

B

`13pi//4`

C

`pi//12`

D

`25pi//12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}\left(\frac{1}{2}\right) - 2 \sin^{-1}\left(\frac{1}{2}\right) + 3 \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) - 4 \tan^{-1}(-1) \), we will evaluate each term step by step. ### Step 1: Evaluate \( \cos^{-1}\left(\frac{1}{2}\right) \) The value of \( \cos^{-1}\left(\frac{1}{2}\right) \) corresponds to the angle whose cosine is \( \frac{1}{2} \). This angle is: \[ \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \] **Hint:** Recall that \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \). ### Step 2: Evaluate \( \sin^{-1}\left(\frac{1}{2}\right) \) The value of \( \sin^{-1}\left(\frac{1}{2}\right) \) corresponds to the angle whose sine is \( \frac{1}{2} \). This angle is: \[ \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \] **Hint:** Remember that \( \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \). ### Step 3: Evaluate \( 2 \sin^{-1}\left(\frac{1}{2}\right) \) Now, we calculate: \[ 2 \sin^{-1}\left(\frac{1}{2}\right) = 2 \times \frac{\pi}{6} = \frac{\pi}{3} \] **Hint:** Multiplying the angle by 2 gives the new angle. ### Step 4: Evaluate \( \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) \) The value of \( \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) \) corresponds to the angle whose cosine is \( -\frac{1}{\sqrt{2}} \). This angle is: \[ \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4} \] **Hint:** The cosine is negative in the second quadrant, where \( \cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}} \). ### Step 5: Evaluate \( 3 \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) \) Now, we calculate: \[ 3 \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = 3 \times \frac{3\pi}{4} = \frac{9\pi}{4} \] **Hint:** Again, multiply the angle by 3 to find the new angle. ### Step 6: Evaluate \( \tan^{-1}(-1) \) The value of \( \tan^{-1}(-1) \) corresponds to the angle whose tangent is \( -1 \). This angle is: \[ \tan^{-1}(-1) = -\frac{\pi}{4} \] **Hint:** The tangent is negative in the fourth quadrant, where \( \tan\left(-\frac{\pi}{4}\right) = -1 \). ### Step 7: Evaluate \( -4 \tan^{-1}(-1) \) Now, we calculate: \[ -4 \tan^{-1}(-1) = -4 \times \left(-\frac{\pi}{4}\right) = \pi \] **Hint:** Multiplying by -4 changes the sign and scales the angle. ### Step 8: Combine all the results Now we combine all the evaluated parts: \[ \cos^{-1}\left(\frac{1}{2}\right) - 2 \sin^{-1}\left(\frac{1}{2}\right) + 3 \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) - 4 \tan^{-1}(-1) \] Substituting the values we found: \[ \frac{\pi}{3} - \frac{\pi}{3} + \frac{9\pi}{4} + \pi \] ### Step 9: Simplify the expression The first two terms cancel out: \[ 0 + \frac{9\pi}{4} + \pi = \frac{9\pi}{4} + \frac{4\pi}{4} = \frac{13\pi}{4} \] Thus, the final answer is: \[ \boxed{\frac{13\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks))|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks))|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)((-1)/(2))-2sin^(-1)((1)/(2))+3cos^(-1)((-1)/(sqrt(2)))-4tan^(-1)(-1) equals to

tan ^(-1)(1) + cos^(-1)(1/sqrt2) + sin^(-1)(1/2)

The principal value of cos^(-1)((1)/(2))+2sin^(-1)((1)/(2))+4tan^(-1)((1)/(sqrt3)) is

sin[cos^(-1)(-1/2)+tan^(-1)(sqrt(3))]

Find the value of 2tan^(-1)(1)-cos^(-1)(-(1)/(2))+3sin^(-1)((1)/(sqrt(2)))+2sec^(-1)((2)/(sqrt(3)))

Find the value of 2tan^(-1)(1)-cos^(-1)(-(1)/(2))+3sin^(-1)((1)/(sqrt(2)))+2sec^(-1)((2)/(sqrt(3)))