Home
Class 12
MATHS
If tan^(-1)y=4tan^(-1)x, then 1//y is ze...

If `tan^(-1)y=4tan^(-1)x`, then `1//y` is zero for

A

`x=1 pm sqrt(2)`

B

`x= sqrt(2) pm sqrt(3)`

C

`x = 3 pm 2 sqrt(2)`

D

All values of x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} y = 4 \tan^{-1} x \), we will derive the relationship between \( y \) and \( x \) step by step. ### Step 1: Rewrite the equation using a substitution Let \( \tan^{-1} x = \theta \). Then, we can express \( x \) as: \[ x = \tan \theta \] Thus, the original equation becomes: \[ \tan^{-1} y = 4\theta \] ### Step 2: Express \( y \) in terms of \( \theta \) Using the identity for tangent of a multiple angle, we have: \[ y = \tan(4\theta) \] ### Step 3: Use the double angle formula for tangent We can express \( \tan(4\theta) \) using the double angle formula: \[ \tan(4\theta) = \frac{2\tan(2\theta)}{1 - \tan^2(2\theta)} \] Now, we need to find \( \tan(2\theta) \): \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} = \frac{2x}{1 - x^2} \] ### Step 4: Substitute \( \tan(2\theta) \) back into the equation for \( y \) Now substitute \( \tan(2\theta) \) into the equation for \( y \): \[ y = \tan(4\theta) = \frac{2 \cdot \frac{2x}{1 - x^2}}{1 - \left(\frac{2x}{1 - x^2}\right)^2} \] ### Step 5: Simplify the expression for \( y \) First, simplify the denominator: \[ 1 - \left(\frac{2x}{1 - x^2}\right)^2 = 1 - \frac{4x^2}{(1 - x^2)^2} = \frac{(1 - x^2)^2 - 4x^2}{(1 - x^2)^2} \] This simplifies to: \[ (1 - x^2)^2 - 4x^2 = 1 - 2x^2 + x^4 - 4x^2 = 1 - 6x^2 + x^4 \] Thus, we have: \[ y = \frac{4x(1 - x^2)}{1 - 6x^2 + x^4} \] ### Step 6: Find \( \frac{1}{y} \) To find \( \frac{1}{y} \): \[ \frac{1}{y} = \frac{1 - 6x^2 + x^4}{4x(1 - x^2)} \] We want to find when \( \frac{1}{y} = 0 \), which occurs when the numerator equals zero: \[ 1 - 6x^2 + x^4 = 0 \] ### Step 7: Solve the quadratic equation Let \( t = x^2 \), then we have: \[ t^2 - 6t + 1 = 0 \] Using the quadratic formula: \[ t = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{6 \pm \sqrt{36 - 4}}{2} = \frac{6 \pm \sqrt{32}}{2} = \frac{6 \pm 4\sqrt{2}}{2} = 3 \pm 2\sqrt{2} \] ### Step 8: Find \( x \) Since \( t = x^2 \): \[ x^2 = 3 + 2\sqrt{2} \quad \text{or} \quad x^2 = 3 - 2\sqrt{2} \] Thus, \[ x = \pm \sqrt{3 + 2\sqrt{2}} \quad \text{or} \quad x = \pm \sqrt{3 - 2\sqrt{2}} \] ### Conclusion The values of \( x \) for which \( \frac{1}{y} = 0 \) are: \[ x = \sqrt{3 + 2\sqrt{2}}, \quad x = -\sqrt{3 + 2\sqrt{2}}, \quad x = \sqrt{3 - 2\sqrt{2}}, \quad x = -\sqrt{3 - 2\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks))|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks))|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)y=4tan^(-1)x, theny is infinite if

If tan^(-1)y=4tan^(-1)x then find the algebraic relation between x and y

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

If xepsilon(-1,1) and 2tan^(-1)x=tan^(-1)y then find y in term of x .

If tan^(-1)x+tan^(-1)y=(pi)/(4), then (1+x)(1+y) is equal to

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

tan^(-1)x+tan^(-1)y is equal to

If 2tan^(- 1)(c o s e c(tan^(- 1)(x))-tan(cot^(- 1)(x)))=tan^(- 1)y then y is equal to