Home
Class 12
MATHS
An integral solution of the equation ...

An integral solution of the equation
`tan^(-1)x+tan^(-1)(1//y)=tan^(-1)3` is

A

(1, 4)

B

(4, 13)

C

(2, 1)

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} x + \tan^{-1} \left( \frac{1}{y} \right) = \tan^{-1} 3 \) for integral solutions, we can use the formula for the sum of inverse tangents: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \quad \text{if } ab < 1 \] ### Step 1: Apply the formula Let \( a = x \) and \( b = \frac{1}{y} \). According to the formula, we have: \[ \tan^{-1} x + \tan^{-1} \left( \frac{1}{y} \right) = \tan^{-1} \left( \frac{x + \frac{1}{y}}{1 - x \cdot \frac{1}{y}} \right) \] ### Step 2: Set the left-hand side equal to the right-hand side Now, we can set this equal to \( \tan^{-1} 3 \): \[ \tan^{-1} \left( \frac{x + \frac{1}{y}}{1 - \frac{x}{y}} \right) = \tan^{-1} 3 \] ### Step 3: Remove the inverse tangent Since the tangent function is one-to-one, we can equate the arguments: \[ \frac{x + \frac{1}{y}}{1 - \frac{x}{y}} = 3 \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ x + \frac{1}{y} = 3 \left( 1 - \frac{x}{y} \right) \] ### Step 5: Expand the equation Expanding the right-hand side: \[ x + \frac{1}{y} = 3 - \frac{3x}{y} \] ### Step 6: Rearrange the equation Rearranging terms leads to: \[ x + \frac{3x}{y} + \frac{1}{y} - 3 = 0 \] ### Step 7: Combine terms Combining the terms gives us: \[ x + \frac{3x + 1}{y} - 3 = 0 \] ### Step 8: Isolate \( y \) Now, isolate \( y \): \[ \frac{3x + 1}{y} = 3 - x \] ### Step 9: Solve for \( y \) Thus, we can express \( y \) in terms of \( x \): \[ y = \frac{3x + 1}{3 - x} \] ### Step 10: Find integral solutions To find integral solutions, we need \( y \) to be an integer. This means \( 3 - x \) must divide \( 3x + 1 \) evenly. We can test integer values for \( x \). ### Step 11: Testing integer values 1. **For \( x = 0 \)**: \[ y = \frac{3(0) + 1}{3 - 0} = \frac{1}{3} \quad \text{(not an integer)} \] 2. **For \( x = 1 \)**: \[ y = \frac{3(1) + 1}{3 - 1} = \frac{4}{2} = 2 \quad \text{(integer solution: (1, 2))} \] 3. **For \( x = 2 \)**: \[ y = \frac{3(2) + 1}{3 - 2} = \frac{7}{1} = 7 \quad \text{(integer solution: (2, 7))} \] 4. **For \( x = 3 \)**: \[ y = \frac{3(3) + 1}{3 - 3} \quad \text{(undefined)} \] 5. **For \( x = 4 \)**: \[ y = \frac{3(4) + 1}{3 - 4} = \frac{13}{-1} = -13 \quad \text{(integer solution: (4, -13))} \] ### Conclusion The integral solutions of the equation are \( (1, 2) \), \( (2, 7) \), and \( (4, -13) \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks))|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks))|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

If 1

The number of solutions of the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3

The number of positive integral pairs satisfying the equation tan^(-1)a+tan^(-1)b=tan^(-1)3

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

The number of real solution of equation tan^(-1)x+cot^(-1)(-|x|)=2tan^(-1)(6x) is