Home
Class 12
MATHS
If sin^(-1) . (x)/(5) +cosec^(-1). (5/3)...

If `sin^(-1) . (x)/(5) +cosec^(-1). (5/3)=pi/2`, then `x=`

A

3

B

4

C

5

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} \left( \frac{x}{5} \right) + \csc^{-1} \left( \frac{5}{3} \right) = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Convert \( \csc^{-1} \) to \( \sin^{-1} \) We know that: \[ \csc^{-1}(y) = \sin^{-1}\left(\frac{1}{y}\right) \] Thus, we can rewrite \( \csc^{-1} \left( \frac{5}{3} \right) \) as: \[ \csc^{-1} \left( \frac{5}{3} \right) = \sin^{-1} \left( \frac{3}{5} \right) \] ### Step 2: Substitute into the equation Now substituting this back into the original equation, we have: \[ \sin^{-1} \left( \frac{x}{5} \right) + \sin^{-1} \left( \frac{3}{5} \right) = \frac{\pi}{2} \] ### Step 3: Use the identity for \( \sin^{-1} \) We know from trigonometric identities that: \[ \sin^{-1}(a) + \sin^{-1}(b) = \frac{\pi}{2} \implies a + b = 1 \] In our case, let: \[ a = \frac{x}{5} \quad \text{and} \quad b = \frac{3}{5} \] Thus, we can write: \[ \frac{x}{5} + \frac{3}{5} = 1 \] ### Step 4: Solve for \( x \) Now, we can solve for \( x \): \[ \frac{x + 3}{5} = 1 \] Multiplying both sides by 5 gives: \[ x + 3 = 5 \] Subtracting 3 from both sides results in: \[ x = 5 - 3 = 2 \] ### Step 5: Final value of \( x \) Thus, the value of \( x \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks))|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks))|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)(x/5) + cosec^(-1) (5/4) = pi/2 , then the value of x is

If sin^(-1)(x/13) + cosec^(-1) (13/12)= pi/2 , then the value of x is

If sin^(-1)((x)/(5))+cos ec^(-1)((5)/(4))=(pi)/(2) then the value of x is: (1)1(2)3(3)4(4)5

If sec^(-1)(x) +"cosec"^(-1) (1/3) = pi/2 , then find x .