Home
Class 12
MATHS
The possible values of x, which satisfy ...

The possible values of x, which satisfy the trigonometric equation `tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))= pi/4` are

A

`pm 1/sqrt(2)`

B

`pm sqrt(2)`

C

`pm 1/2`

D

`pm2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}, \] we can use the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] provided that \(ab < 1\). ### Step 1: Identify \(a\) and \(b\) Let \[ a = \frac{x-1}{x-2} \quad \text{and} \quad b = \frac{x+1}{x+2}. \] ### Step 2: Calculate \(a + b\) We need to find \(a + b\): \[ a + b = \frac{x-1}{x-2} + \frac{x+1}{x+2}. \] To combine these fractions, we find a common denominator: \[ a + b = \frac{(x-1)(x+2) + (x+1)(x-2)}{(x-2)(x+2)}. \] ### Step 3: Simplify the numerator Expanding the numerator: \[ (x-1)(x+2) = x^2 + 2x - x - 2 = x^2 + x - 2, \] \[ (x+1)(x-2) = x^2 - 2x + x - 2 = x^2 - x - 2. \] Adding these two results: \[ a + b = \frac{(x^2 + x - 2) + (x^2 - x - 2)}{(x-2)(x+2)} = \frac{2x^2 - 4}{(x-2)(x+2)}. \] ### Step 4: Calculate \(ab\) Now we calculate \(ab\): \[ ab = \left(\frac{x-1}{x-2}\right) \left(\frac{x+1}{x+2}\right) = \frac{(x-1)(x+1)}{(x-2)(x+2)} = \frac{x^2 - 1}{x^2 - 4}. \] ### Step 5: Apply the formula for the sum of inverse tangents Using the sum of inverse tangents formula: \[ \tan^{-1}\left(\frac{2x^2 - 4}{(x-2)(x+2) - (x^2 - 1)}\right) = \frac{\pi}{4}. \] Since \(\tan\left(\frac{\pi}{4}\right) = 1\), we have: \[ \frac{2x^2 - 4}{(x-2)(x+2) - (x^2 - 1)} = 1. \] ### Step 6: Set up the equation Cross-multiplying gives: \[ 2x^2 - 4 = (x-2)(x+2) - (x^2 - 1). \] ### Step 7: Simplify the right-hand side Calculating the right-hand side: \[ (x-2)(x+2) = x^2 - 4, \] so we have: \[ x^2 - 4 - (x^2 - 1) = -4 + 1 = -3. \] ### Step 8: Set up the final equation Thus, we have: \[ 2x^2 - 4 = -3. \] Adding 4 to both sides gives: \[ 2x^2 = 1. \] ### Step 9: Solve for \(x\) Dividing by 2: \[ x^2 = \frac{1}{2}. \] Taking the square root: \[ x = \pm \frac{1}{\sqrt{2}}. \] ### Conclusion The possible values of \(x\) that satisfy the equation are: \[ x = \frac{1}{\sqrt{2}} \quad \text{and} \quad x = -\frac{1}{\sqrt{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks))|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos

Similar Questions

Explore conceptually related problems

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

Solve the equation (tan^(-)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4)

Solve : tan^(-1) ((x-1) /( x-2))-tan^(-1)((x+1)/(x+2))=(pi)/(4) ,

(tan^(-1)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4). find

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4) then find the value of x

Solve the following equations : tan^(-1) ((x-2)/(x-4)) +tan^(-1) ((x+2)/(x+4)) = pi/ 4

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4