Home
Class 12
MATHS
The radical centre of circles represente...

The radical centre of circles represented by `S_(1)-=x^(2)+y^(2)-7x-6y-4=0,S_(2)-=x^(2)+y^(2)+10x+6y-4=0`

A

`(-1,1)`

B

(1,-1)

C

(0,0)

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the radical center of the circles represented by the equations \( S_1: x^2 + y^2 - 7x - 6y - 4 = 0 \) and \( S_2: x^2 + y^2 + 10x + 6y - 4 = 0 \), we will follow these steps: ### Step 1: Subtract the equations of the circles We start by subtracting the second equation from the first: \[ S_1 - S_2 = (x^2 + y^2 - 7x - 6y - 4) - (x^2 + y^2 + 10x + 6y - 4) = 0 \] ### Step 2: Simplify the equation Now, we simplify the equation: \[ S_1 - S_2 = -7x - 6y - 4 - (10x + 6y - 4) = -7x - 6y - 4 - 10x - 6y + 4 = -17x - 12y = 0 \] ### Step 3: Rearranging the equation Rearranging gives us the equation of the radical axis: \[ 17x + 12y = 0 \] ### Step 4: Finding the radical center The radical center lies on the radical axis. To find the radical center, we can check the given options to see which point satisfies the equation of the radical axis. #### Option 1: \((-1, 1)\) Substituting \((-1, 1)\): \[ 17(-1) + 12(1) = -17 + 12 = -5 \quad \text{(not equal to 0)} \] #### Option 2: \((1, -1)\) Substituting \((1, -1)\): \[ 17(1) + 12(-1) = 17 - 12 = 5 \quad \text{(not equal to 0)} \] #### Option 3: \((0, 0)\) Substituting \((0, 0)\): \[ 17(0) + 12(0) = 0 + 0 = 0 \quad \text{(equal to 0)} \] ### Conclusion The radical center of the circles is at the point \((0, 0)\). ---
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : Single Option Correct Type)|15 Videos
  • CIRCLES

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : One or More One Option Correct Type)|10 Videos
  • BINOMIAL THEOREM

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|13 Videos
  • COMPLEX NUMBERS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|3 Videos

Similar Questions

Explore conceptually related problems

The radical centre of the circles x^(2)+y^(2)=9 , x^(2)+y^(2)-2x-2y-5=0 , x^(2)+y^(2)+4x+6y-19=0 is A) (0,0) (B) (1,1) (C) (2,2) (D) (3,3)

The radical center of the circles x^(2)+y^(2)-4x-6y+5=0 , x^(2)+y^(2)-2x-4y-1=0 , x^(2)+y^(2)-6x-2y=0 .

The radical center of the circles [x^(2)+y^(2)-4x-6y+5=0],[x^(2)+y^(2)-2x-4y-1=0],[x^(2)+y^(2)-6x-2y=0] , [((-7)/(6),(11)/(6))],[((11)/(6),(7)/(6))],[((7)/(6),(11)/(6))]

Find the radical center of the circles x^(2)+y^(2)+4x+6y=19,x^(2)+y^(2)=9,x^(2)+y^(2)-2x-4y=5

The radical centre of x^(2)+y^(2)-2x-2y+1=0, x^(2)+y^(2)-4x+6y-2=0 and x^(2)+y^(2)+3x-2y+4=0 is

If P_(1), P_(2), P_(3) are the perimeters of the three circles. S_(1) : x^(2) + y^(2) + 8x - 6y = 0 S_(2) , 4x^(2) + 4y^(2) -4x - 12y - 186 = 0 and S_(3) : x^(2) + y^(2) -6x + 6y - 9 = 0 repeectively, then the relation amongst P_(1), P_(2) and P_(3) is .............

The circles x^(2)+y^(2)-4x-6y-12=0 and x^(2)+y^(2)+4x+6y+4=0

Prove that the centres of the three circles x^(2)+y^(2)-4x6y12=0,x^(2)+y^(2)+2x+4y-5=0 and x^(2)+y^(2)-10x16y+7=0 are collinear.