Home
Class 12
MATHS
If two circles x^(2)+y^(2)+c^(2)=2ax and...

If two circles `x^(2)+y^(2)+c^(2)=2ax` and `x^(2)+y^(2)+c^(2)-2by=0` touch each other externally , then prove that `(1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))`

A

`(1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))`

B

`(1)/(b^(2))+(1)/(c^(2))+(1)/(a^(2))`

C

`(1)/(a^(2))+(1)/(b^(2))+(1)/(c^(2))=0`

D

`(1)/(a^(2))=(1)/(b^(2))-(1)/(c^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : One or More One Option Correct Type)|10 Videos
  • CIRCLES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|13 Videos
  • CIRCLES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More One Option Correct Type)|2 Videos
  • BINOMIAL THEOREM

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|13 Videos
  • COMPLEX NUMBERS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|3 Videos

Similar Questions

Explore conceptually related problems

If circles (x -1)^(2) + y^(2) = a^(2) " and " (x + 2)^(2) + y^(2) = b^(2) touch each other externally , then

If two circles x^(2) + y^(2) - 2ax + c = =0 and x^(2) + y^(2) - 2by + c = 0 touch each other , then c =

If the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) touch each other, then

The circles x^(2)+y^(2)+2x-2y+1=0 and x^(2)+y^(2)-2x-2y+1=0 touch each other

If the circles x^(2)+y^(2)+2ax+b=0 and x^(2)+y^(2)+2cx+b=0 touch each other (a!=c)

Two circles x^(2) + y^(2) -2kx = 0 and x^(2) + y^(2) - 4x + 8y + 16 = 0 touch each other externally.Then k is

If circles x^(2) + y^(2) = 9 " and " x^(2) + y^(2) + 2ax + 2y + 1 = 0 touch each other , then a =