Home
Class 12
MATHS
If the eccentric angles of the ends of a...

If the eccentric angles of the ends of a focal chord of the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1(agtb)` are `theta_(1) and theta_(2)`, then value of `"tan"(theta_(1))/(2) "tan"(theta_(2))/(2)` equals

A

`(e-1)/(e+1)`

B

`(e-1)/(e^(2)+1)`

C

`(e+1)/(e-1)`

D

`(e^(2)+1)/(e-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\tan(\theta_1/2) \tan(\theta_2/2)}\) for the ends of a focal chord of the ellipse given by the equation: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (a > b) \] ### Step-by-Step Solution: 1. **Understanding the Ellipse**: The given ellipse has its major axis along the x-axis and minor axis along the y-axis. The foci of the ellipse are located at \((\pm c, 0)\), where \(c = \sqrt{a^2 - b^2}\). 2. **Eccentric Angles**: Let the eccentric angles of the ends of the focal chord be \(\theta_1\) and \(\theta_2\). The coordinates of the points on the ellipse corresponding to these angles are: - For \(\theta_1\): \(P(a \cos \theta_1, b \sin \theta_1)\) - For \(\theta_2\): \(Q(a \cos \theta_2, b \sin \theta_2)\) 3. **Focal Chord Property**: A focal chord is a line segment that passes through one of the foci. For the ellipse, the property of the focal chord states that: \[ \tan\left(\frac{\theta_1}{2}\right) \tan\left(\frac{\theta_2}{2}\right) = \frac{e - 1}{e + 1} \] where \(e = \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}}\). 4. **Using the Eccentricity**: Substitute \(e\) into the equation: \[ \tan\left(\frac{\theta_1}{2}\right) \tan\left(\frac{\theta_2}{2}\right) = \frac{\sqrt{1 - \frac{b^2}{a^2}} - 1}{\sqrt{1 - \frac{b^2}{a^2}} + 1} \] 5. **Final Result**: Therefore, the value of \(\tan\left(\frac{\theta_1}{2}\right) \tan\left(\frac{\theta_2}{2}\right)\) is given by: \[ \tan\left(\frac{\theta_1}{2}\right) \tan\left(\frac{\theta_2}{2}\right) = \frac{e - 1}{e + 1} \] ### Conclusion: The final answer is: \[ \frac{\tan(\theta_1/2) \tan(\theta_2/2)} = \frac{e - 1}{e + 1} \]
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : Single Option Correct Type)|15 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : One or More than One Option Correct Type)|15 Videos
  • COMPLEX NUMBERS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|3 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos

Similar Questions

Explore conceptually related problems

If theta_(1),theta_(2) are the eccentric angles of the extremities of a focal chord of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(a

If tan theta+(1)/(tan theta)=2, find the value of tan^(2)theta+(1)/(tan^(2)theta)

If the focal chord of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, is normal at (a cos theta,b sin theta) then eccentricity of the ellipse is

If tantheta+(1)/(tantheta)=2 then the value of tan^(2)theta+(1)/(tan^(2)theta) is equal to :

tan theta+(1)/(tan theta)=2 then prove that tan^(2)theta+(1)/(tan^(2)theta)=2

If (a sec theta,b tan theta) and (a sec phi,b tan phi) be two coordinate of the ends of a focal chord passing through (ae,0) of (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 then tan((theta)/(2))tan((phi)/(2)) equals to