Home
Class 12
MATHS
Lines x+y=1 and 3y=x+3 intersect the ell...

Lines `x+y=1 and 3y=x+3` intersect the ellipse `x^(2)+9y^(2)=9` at the points P,Q,R. the area of the triangles PQR is

A

`(36)/(5)`

B

`(18)/(5)`

C

`(9)/(5)`

D

`(1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle PQR formed by the intersection of the lines \( x + y = 1 \) and \( 3y = x + 3 \) with the ellipse \( x^2 + 9y^2 = 9 \), we will follow these steps: ### Step 1: Find the intersection points of the lines with the ellipse. 1. **Equation of the ellipse**: \[ x^2 + 9y^2 = 9 \] 2. **First line**: \[ x + y = 1 \quad \Rightarrow \quad y = 1 - x \] Substitute \( y \) in the ellipse equation: \[ x^2 + 9(1 - x)^2 = 9 \] Expanding: \[ x^2 + 9(1 - 2x + x^2) = 9 \] \[ x^2 + 9 - 18x + 9x^2 = 9 \] \[ 10x^2 - 18x = 0 \] Factor out \( x \): \[ x(10x - 18) = 0 \] Thus, \( x = 0 \) or \( x = \frac{18}{10} = \frac{9}{5} \). For \( x = 0 \): \[ y = 1 \quad \Rightarrow \quad P(0, 1) \] For \( x = \frac{9}{5} \): \[ y = 1 - \frac{9}{5} = -\frac{4}{5} \quad \Rightarrow \quad Q\left(\frac{9}{5}, -\frac{4}{5}\right) \] 3. **Second line**: \[ 3y = x + 3 \quad \Rightarrow \quad y = \frac{x}{3} + 1 \] Substitute \( y \) in the ellipse equation: \[ x^2 + 9\left(\frac{x}{3} + 1\right)^2 = 9 \] Expanding: \[ x^2 + 9\left(\frac{x^2}{9} + \frac{2x}{3} + 1\right) = 9 \] \[ x^2 + x^2 + 6x + 9 = 9 \] \[ 2x^2 + 6x = 0 \] Factor out \( 2x \): \[ 2x(x + 3) = 0 \] Thus, \( x = 0 \) or \( x = -3 \). For \( x = 0 \): \[ y = 1 \quad \Rightarrow \quad P(0, 1) \quad \text{(already found)} \] For \( x = -3 \): \[ y = \frac{-3}{3} + 1 = 0 \quad \Rightarrow \quad R(-3, 0) \] ### Step 2: Identify the points of intersection. The points of intersection are: - \( P(0, 1) \) - \( Q\left(\frac{9}{5}, -\frac{4}{5}\right) \) - \( R(-3, 0) \) ### Step 3: Calculate the area of triangle PQR. Using the formula for the area of a triangle given vertices \((x_1, y_1)\), \((x_2, y_2)\), \((x_3, y_3)\): \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Substituting the points \( P(0, 1) \), \( Q\left(\frac{9}{5}, -\frac{4}{5}\right) \), \( R(-3, 0) \): \[ \text{Area} = \frac{1}{2} \left| 0\left(-\frac{4}{5} - 0\right) + \frac{9}{5}(0 - 1) + (-3)(1 - (-\frac{4}{5})) \right| \] \[ = \frac{1}{2} \left| 0 + \frac{9}{5}(-1) + (-3)(1 + \frac{4}{5}) \right| \] \[ = \frac{1}{2} \left| -\frac{9}{5} - 3 \cdot \frac{9}{5} \right| \] \[ = \frac{1}{2} \left| -\frac{9}{5} - \frac{27}{5} \right| \] \[ = \frac{1}{2} \left| -\frac{36}{5} \right| = \frac{18}{5} \] ### Final Answer: The area of triangle PQR is \( \frac{18}{5} \) square units. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : Single Option Correct Type)|5 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : One or More than One Option Correct Type)|15 Videos
  • COMPLEX NUMBERS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|3 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos

Similar Questions

Explore conceptually related problems

The line 2x+3y=12 touches the ellipse (x^(2))/9+(y^(2))/4=2 at the points (3,2).

Find area of the ellipse 4x ^(2) + 9y ^(2) = 36.

Knowledge Check

  • The line x=2y intersects the ellipse (x^(2))/4+y^(2)=1 at the points P and Q . The equation of the circle with PQ as diameter is

    A
    `x^(2)+y^(2)=1/2`
    B
    `x^(2)+y^(2)=1`
    C
    `x^(2)+y^(2)=2`
    D
    `x^(2)+y^(2)=5/2`
  • The line 2x+y=3 intersects the ellipse 4x^(2)+y^(2)=5 at two points. The point of intersection of the tangents to the ellipse at these point is

    A
    `((5)/(6),(5)/(6))`
    B
    `((5)/(3),(5)/(6))`
    C
    `((5)/(6),(5)/(3))`
    D
    `((5)/(3),(5)/(3))`
  • On the ellipse 4x^(2)+9y^(2)=1 , the points at which the tangent are parallel to the line 8x=9y are

    A
    `((2)/(5),(1)/(5))`
    B
    `(-(2)/(5),(1)/(5))`
    C
    `(-(2)/(5),-(1)/(5))`
    D
    `((2)/(5),-(1)/(5))`
  • Similar Questions

    Explore conceptually related problems

    The line 2x + 3y = 12 touches the ellipse x^2// 9+ y^2//4 = 2 at the point (3, 2).

    A vertical line passing through the point (h, 0) intersects the ellipse (x^2)/(4)+(y^2)/(3)=1 at the point P and Q. Let the tangets to the ellipse at P and Q meet at the point R. If triangle(h)= area of the triangle PQR, {:(triangle_(1)=" max "triangle(h)" and "triangle_(2)=" max " triangle(h)),(" "(1)/(2) le h le 1" "(1)/(2) le h le 1):} Then (8)/(sqrt(5)) triangle_(1)-8 triangle_(2)=

    if a variable tangent of the circle x^(2)+y^(2)=1 intersects the ellipse x^(2)+2y^(2)=4 at P and Q. then the locus of the points of intersection of the tangents at P and Q is

    What is the area of the ellipse 4x^(2) + 9y^(2) = 1 .

    On the ellipse 4x^2 +9y^2 = 1 , the points at which the tangents are parallel to the line 8x = 9y are