Home
Class 12
MATHS
Let P be the foot of the perpendicular f...

Let P be the foot of the perpendicular from focus S of hyperbola `x^2/a^2-y^2/b^2=1` on the line `bx-ay =0` and let C he the centre of the hyperbola. Then the area of the rectangle whose sides are equal to that of SP and CP is

A

2ab

B

ab

C

`((a^(2)+b^(2)))/(2)`

D

`a/b`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : Single Option Correct Type)|5 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : One or More than One Option Correct Type)|15 Videos
  • COMPLEX NUMBERS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|3 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos

Similar Questions

Explore conceptually related problems

The locus of the foot of perpendicular drawn from the centre of the hyperbola x^(2)-y^(2)=25 to its normal.

Show that the locus of the foot of the perpendicular drawn from focus to a tangent to the hyperbola x^2/a^2 - y^2/b^2 = 1 is x^2 + y^2 = a^2 .

The locus of foot of perpendicular from focus of ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 to its tangents is

Let 'p' be the perpendicular distance from the centre C of the hyperbola x^2/a^2-y^2/b^2=1 to the tangent drawn at a point R on the hyperbola. If S & S' are the two foci of the hyperbola, then show that (RS + RS')^2 = 4 a^2(1+b^2/p^2).

If the normal at a pont P to the hyperbola x^2/a^2 - y^2/b^2 =1 meets the x-axis at G , show that the SG = eSP.S being the focus of the hyperbola.

Point P, Q and R on the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1 are such that line PQ passes through the centre of the hyperbola . Then product of slopes of PR and QR is

Let Q be the foot of the perpendicular from the origin O to the tangent at a point P(alpha, beta) on the parabola y^(2)=4ax and S be the focus of the parabola , then (OQ)^(2) (SP) is equal to

Let P(4,3) be a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . If the normal at P intersects the x-axis at (16,0), then the eccentricity of the hyperbola is

MTG-WBJEE-CONIC SECTIONS-WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)
  1. Number of intersecting points of the coincs 4x^2+9y^2=1 and 4x^2+y^2=4...

    Text Solution

    |

  2. Then equation of auxiliary circle of the ellipse 16x^2 + 25y^2 +32x-10...

    Text Solution

    |

  3. If P Q is a double ordinate of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1...

    Text Solution

    |

  4. The line y=x+lambda is a tangent to an ellipse 2x^2+3y^2=1 then

    Text Solution

    |

  5. The locus of the point of intersection of the straight lines x/a+y/b=k...

    Text Solution

    |

  6. Let P be the foot of the perpendicular from focus S of hyperbola x^2/a...

    Text Solution

    |

  7. B is extermity of the minor axis of an elipse whose foci are S and S'....

    Text Solution

    |

  8. The axis of the parabola x^2+2x y+y^2-5x+5y-5=0 is

    Text Solution

    |

  9. The line segment joining the foci of the hyperbola x^2 – y^2 +1 = 0 is...

    Text Solution

    |

  10. The focus of the conic x^(2)-6x+4y+1=0 is

    Text Solution

    |

  11. Equation of common tangent of y=x^2,y=-x^2+4x-4 is

    Text Solution

    |

  12. Let the eccentricity of the hyperbola (x ^(2))/(a ^(2))- (y ^(3))/(b ^...

    Text Solution

    |

  13. Let a, r, s, t be non-zero real numbers. Let P(at^(2),2at),Q(ar^(2),2a...

    Text Solution

    |

  14. Let P be a point on the ellipse (x^(2))/(9)+(y^(2))/(4)=1 and the line...

    Text Solution

    |

  15. Let P(4,3) be a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))...

    Text Solution

    |

  16. For the hyperbola x^2/(cos^2alpha)-y^2/(sin^2alpha)=1; (0<alpha<pi/4)

    Text Solution

    |

  17. S and T are foci of an ellipse and B is an end of the minor a...

    Text Solution

    |

  18. The equation of th directrices of the hyperbola 3x^(2)-3y^(2)-18x+12y+...

    Text Solution

    |

  19. P is the extremity of the latuscrectum of ellipse 3x^(2)+4y^(2)=48 in ...

    Text Solution

    |

  20. The length of conjugate axis of a hyperbola is greater than the length...

    Text Solution

    |