Home
Class 12
MATHS
For the hyperbola x^2/(cos^2alpha)-y^2/(...

For the hyperbola `x^2/(cos^2alpha)-y^2/(sin^2alpha)=1``; (0

A

directrix

B

vertices

C

foci

D

eccentricity

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : Single Option Correct Type)|5 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : One or More than One Option Correct Type)|15 Videos
  • COMPLEX NUMBERS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|3 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos

Similar Questions

Explore conceptually related problems

For hyperbola x^2/(cos^2alpha)-y^2/(sin^2alpha)=1 which of the following remains constant with change in alpha

For the hyperbola (x^(2))/(cos^(2)alpha)-(y^(2))/(sin^(2)alpha)=1;(0

For the hyperbola (x^(2))/(cos^(2)alpha)-(y^(2))/(sin^(2)alpha)=1; (0

For the hyperbola (x^(2))/(cos^(2)alpha)-(y^(2))/(sin^(2)alpha)=1 which of the following remains constant when varies? (1) eccentricity (2) directrix (3) abscissae of vertices (4) abscissae of foci

Which one of the following is independent of (0 lt alpha lt pi//2) for the hyperbola (x^(2))/(cos^(2) alpha)-(y^(2))/(sin^(2)alpha)=1

Given the family of hyperbolas x^(2)/(cos^(2)alpha)-y^(2)/sin^(2)alpha=1" for "alphain(0,pi//2) which of the following does not change with varying alpha ?

For the hyperbola (x^(2))/(cos^(2) alpha ) - (y^(2))/(sin^(2) alpha ) = 1 , where alpha is a parameter, which of the following remains constant ?

Line xcos alpha +y sin alpha =p is a normal to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , if

MTG-WBJEE-CONIC SECTIONS-WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)
  1. Number of intersecting points of the coincs 4x^2+9y^2=1 and 4x^2+y^2=4...

    Text Solution

    |

  2. Then equation of auxiliary circle of the ellipse 16x^2 + 25y^2 +32x-10...

    Text Solution

    |

  3. If P Q is a double ordinate of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1...

    Text Solution

    |

  4. The line y=x+lambda is a tangent to an ellipse 2x^2+3y^2=1 then

    Text Solution

    |

  5. The locus of the point of intersection of the straight lines x/a+y/b=k...

    Text Solution

    |

  6. Let P be the foot of the perpendicular from focus S of hyperbola x^2/a...

    Text Solution

    |

  7. B is extermity of the minor axis of an elipse whose foci are S and S'....

    Text Solution

    |

  8. The axis of the parabola x^2+2x y+y^2-5x+5y-5=0 is

    Text Solution

    |

  9. The line segment joining the foci of the hyperbola x^2 – y^2 +1 = 0 is...

    Text Solution

    |

  10. The focus of the conic x^(2)-6x+4y+1=0 is

    Text Solution

    |

  11. Equation of common tangent of y=x^2,y=-x^2+4x-4 is

    Text Solution

    |

  12. Let the eccentricity of the hyperbola (x ^(2))/(a ^(2))- (y ^(3))/(b ^...

    Text Solution

    |

  13. Let a, r, s, t be non-zero real numbers. Let P(at^(2),2at),Q(ar^(2),2a...

    Text Solution

    |

  14. Let P be a point on the ellipse (x^(2))/(9)+(y^(2))/(4)=1 and the line...

    Text Solution

    |

  15. Let P(4,3) be a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))...

    Text Solution

    |

  16. For the hyperbola x^2/(cos^2alpha)-y^2/(sin^2alpha)=1; (0<alpha<pi/4)

    Text Solution

    |

  17. S and T are foci of an ellipse and B is an end of the minor a...

    Text Solution

    |

  18. The equation of th directrices of the hyperbola 3x^(2)-3y^(2)-18x+12y+...

    Text Solution

    |

  19. P is the extremity of the latuscrectum of ellipse 3x^(2)+4y^(2)=48 in ...

    Text Solution

    |

  20. The length of conjugate axis of a hyperbola is greater than the length...

    Text Solution

    |