Home
Class 12
MATHS
Maximum value of the function f(x) =(x)/...

Maximum value of the function `f(x) =(x)/(8)+(2)/(x)` on the interval [1,6] is

A

1

B

`(9)/(8)`

C

`(13)/(12)`

D

`(17)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = \frac{x}{8} + \frac{2}{x} \) on the interval \([1, 6]\), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating the function \( f(x) \): \[ f'(x) = \frac{d}{dx}\left(\frac{x}{8}\right) + \frac{d}{dx}\left(\frac{2}{x}\right) \] The derivative of \( \frac{x}{8} \) is \( \frac{1}{8} \) and the derivative of \( \frac{2}{x} \) can be computed using the power rule: \[ \frac{d}{dx}\left(\frac{2}{x}\right) = \frac{d}{dx}(2x^{-1}) = -2x^{-2} = -\frac{2}{x^2} \] Thus, the derivative is: \[ f'(x) = \frac{1}{8} - \frac{2}{x^2} \] ### Step 2: Set the derivative to zero to find critical points To find the critical points, we set the derivative equal to zero: \[ \frac{1}{8} - \frac{2}{x^2} = 0 \] Rearranging gives: \[ \frac{2}{x^2} = \frac{1}{8} \] Cross-multiplying yields: \[ 2 \cdot 8 = x^2 \implies x^2 = 16 \implies x = 4 \quad (\text{since } x \text{ must be positive}) \] ### Step 3: Evaluate the function at critical points and endpoints Now we need to evaluate \( f(x) \) at the critical point \( x = 4 \) and at the endpoints of the interval \( x = 1 \) and \( x = 6 \). 1. **At \( x = 1 \)**: \[ f(1) = \frac{1}{8} + \frac{2}{1} = \frac{1}{8} + 2 = \frac{1}{8} + \frac{16}{8} = \frac{17}{8} \] 2. **At \( x = 4 \)**: \[ f(4) = \frac{4}{8} + \frac{2}{4} = \frac{1}{2} + \frac{1}{2} = 1 \] 3. **At \( x = 6 \)**: \[ f(6) = \frac{6}{8} + \frac{2}{6} = \frac{3}{4} + \frac{1}{3} \] To add these fractions, we find a common denominator (which is 12): \[ f(6) = \frac{3 \times 3}{4 \times 3} + \frac{1 \times 4}{3 \times 4} = \frac{9}{12} + \frac{4}{12} = \frac{13}{12} \] ### Step 4: Compare the values Now we compare the values: - \( f(1) = \frac{17}{8} \approx 2.125 \) - \( f(4) = 1 \) - \( f(6) = \frac{13}{12} \approx 1.0833 \) ### Conclusion The maximum value of \( f(x) \) on the interval \([1, 6]\) is: \[ \boxed{\frac{17}{8}} \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks) )|15 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY3 : One or More than One Option Correct Type (2 Marks)|15 Videos
  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 2 : Single Option Correct Type (2 Mark ) )|5 Videos
  • APPLICATION OF INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|3 Videos

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=((1+x)^(0.6))/(1+x^(06)) in the interval [0,1] is 2^(0.4)(b)2^(-0.4)1(d)2^(0.6)

The mean value of the function f(x) = (1)/( x^2 + x) on the interval [1, 3//2] is

The mean value of the function f(x)=(2)/(e^(x)+1) in the interval [0,2] is

The greatest value of the function f(x)=2.3^(3x)-3^(2x).4+2.3^(x) in the interval [-1,1] is

The maximum value of the function ƒ(x) = e^x + x ln x on the interval 1 le x le 2 is

the value of the function f(x)=(x^(2)-3x+2)/(x^(2)+x-6) lies in the interval.

Find the sum of the local maximum and local minimum values of the function f (x) = (tan 3x)/(tan^(3) x) on interval (0 , pi//2) .

Examine the validity of Lagrangel's mean value theorem for the function f(x)=x^(2/3) in the interval [-1,1] .

Examine the validity of Lagrangel's mean value theorem for the function f(x)=x^(2/3) in the interval [-1,1] .