Home
Class 12
MATHS
At x = (5pi)/(6), f(x)= 2sin 3x+3 cos 3x...

At x = `(5pi)/(6),` f(x)= 2sin 3x+3 cos 3x is

A

maximum

B

minimum

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the function \( f(x) = 2\sin(3x) + 3\cos(3x) \) at \( x = \frac{5\pi}{6} \) is a maximum, minimum, zero, or none of these, we will follow these steps: ### Step 1: Differentiate the function We start by finding the derivative \( f'(x) \). \[ f'(x) = \frac{d}{dx}[2\sin(3x) + 3\cos(3x)] \] Using the chain rule, we differentiate each term: \[ f'(x) = 2 \cdot 3\cos(3x) - 3 \cdot 3\sin(3x) = 6\cos(3x) - 9\sin(3x) \] ### Step 2: Set the derivative to zero To find critical points, we set the derivative equal to zero: \[ 6\cos(3x) - 9\sin(3x) = 0 \] Rearranging gives: \[ 6\cos(3x) = 9\sin(3x) \] Dividing both sides by 3: \[ 2\cos(3x) = 3\sin(3x) \] ### Step 3: Express in terms of tangent We can express this in terms of tangent: \[ \tan(3x) = \frac{2}{3} \] ### Step 4: Substitute \( x = \frac{5\pi}{6} \) Now we will check if \( x = \frac{5\pi}{6} \) satisfies this equation: \[ 3x = 3 \cdot \frac{5\pi}{6} = \frac{15\pi}{6} = \frac{5\pi}{2} \] Now we find \( \tan\left(\frac{5\pi}{2}\right) \): The angle \( \frac{5\pi}{2} \) corresponds to \( \frac{5\pi}{2} - 2\pi = \frac{\pi}{2} \), where \( \tan\left(\frac{\pi}{2}\right) \) is undefined (or infinity). Thus: \[ \tan\left(\frac{5\pi}{2}\right) \neq \frac{2}{3} \] ### Step 5: Evaluate \( f\left(\frac{5\pi}{6}\right) \) Next, we evaluate \( f\left(\frac{5\pi}{6}\right) \): \[ f\left(\frac{5\pi}{6}\right) = 2\sin\left(3 \cdot \frac{5\pi}{6}\right) + 3\cos\left(3 \cdot \frac{5\pi}{6}\right) \] Calculating \( 3x = \frac{15\pi}{6} = \frac{5\pi}{2} \): \[ f\left(\frac{5\pi}{6}\right) = 2\sin\left(\frac{5\pi}{2}\right) + 3\cos\left(\frac{5\pi}{2}\right) \] Using the values of sine and cosine: \[ \sin\left(\frac{5\pi}{2}\right) = 1 \quad \text{and} \quad \cos\left(\frac{5\pi}{2}\right) = 0 \] Thus: \[ f\left(\frac{5\pi}{6}\right) = 2 \cdot 1 + 3 \cdot 0 = 2 \] ### Conclusion Since \( f\left(\frac{5\pi}{6}\right) = 2 \), it is neither a maximum, minimum, nor zero. Therefore, the answer is **none of these**. ---
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks) )|15 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY3 : One or More than One Option Correct Type (2 Marks)|15 Videos
  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 2 : Single Option Correct Type (2 Mark ) )|5 Videos
  • APPLICATION OF INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|3 Videos

Similar Questions

Explore conceptually related problems

At x=(5 pi)/(6),f(x)=2sin3x+3cos3x is

At x=(5pi)/6, f(x)=2sin3x+3cos3x is (a) 0 (b) maximum (c) minimum (d) none of these

At x= (5pi)/(6), the value of 2 sin 3x+ 3 cos 3x is

At x=5(pi)/(6) then the value of 2sin x+3cos3x is

lim_ (x rarr (pi) / (6)) (3sin x-sqrt (3) cos x) / (6x-pi)

In the interval ((pi)/(4), (11 pi)/(12)) , then function f (x) = sin 3x - cos 3x, 0 lt x lt pi is:

f:[-3 pi,2 pi]f(x)=sin3x

which of the following statement is // are true ? (i) f(x) =sin x is increasing in interval [(-pi)/(2),(pi)/(2)] (ii) f(x) = sin x is increasing at all point of the interval [(-pi)/(2),(pi)/(2)] (3) f(x) = sin x is increasing in interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (4) f(x)=sin x is increasing at all point of the interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (5) f(x) = sin x is increasing in intervals [(-pi)/(2),(pi)/(2)]& [(3pi)/(2),(5pi)/(2)]