Home
Class 12
MATHS
Let y = a(1 - cos theta), x = a(theta- s...

Let y = `a(1 - cos theta), x = a(theta- sin theta)`, then y regarded as a function of x is maximum when x equals to

A

`(pi)/(2)`

B

`-(pi)/(2)`

C

`(pi)`

D

`(pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of \( y \) as a function of \( x \) given the parametric equations: \[ y = a(1 - \cos \theta) \] \[ x = a(\theta - \sin \theta) \] ### Step 1: Differentiate \( y \) and \( x \) with respect to \( \theta \) First, we differentiate \( y \) and \( x \) with respect to \( \theta \): 1. **Differentiate \( y \)**: \[ \frac{dy}{d\theta} = a \cdot \frac{d}{d\theta}(1 - \cos \theta) = a \cdot \sin \theta \] 2. **Differentiate \( x \)**: \[ \frac{dx}{d\theta} = a \cdot \frac{d}{d\theta}(\theta - \sin \theta) = a \cdot (1 - \cos \theta) \] ### Step 2: Find \( \frac{dy}{dx} \) Using the chain rule, we can express \( \frac{dy}{dx} \) as follows: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a \sin \theta}{a(1 - \cos \theta)} = \frac{\sin \theta}{1 - \cos \theta} \] ### Step 3: Set \( \frac{dy}{dx} = 0 \) To find the maximum, we set \( \frac{dy}{dx} = 0 \): \[ \frac{\sin \theta}{1 - \cos \theta} = 0 \] This implies that: \[ \sin \theta = 0 \] ### Step 4: Solve for \( \theta \) The solutions for \( \sin \theta = 0 \) are: \[ \theta = n\pi \quad (n \in \mathbb{Z}) \] ### Step 5: Find the corresponding \( x \) values We need to find the value of \( x \) when \( \theta = \pi \): \[ x = a(\pi - \sin \pi) = a(\pi - 0) = a\pi \] ### Step 6: Check the nature of the critical point To confirm that this is a maximum, we can check the sign of \( \frac{dy}{dx} \) around \( \theta = \pi \): - For \( \theta < \pi \), \( \sin \theta > 0 \) and \( 1 - \cos \theta > 0 \) ⇒ \( \frac{dy}{dx} > 0 \) - For \( \theta > \pi \), \( \sin \theta < 0 \) and \( 1 - \cos \theta > 0 \) ⇒ \( \frac{dy}{dx} < 0 \) Since \( \frac{dy}{dx} \) changes from positive to negative at \( \theta = \pi \), this confirms that \( x = a\pi \) is indeed a maximum. ### Final Answer Thus, the value of \( x \) at which \( y \) is maximum is: \[ \boxed{a\pi} \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY3 : One or More than One Option Correct Type (2 Marks)|15 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1: Single Option correct Type (1 Mark))|15 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|11 Videos
  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 2 : Single Option Correct Type (2 Mark ) )|5 Videos
  • APPLICATION OF INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|3 Videos

Similar Questions

Explore conceptually related problems

If x=cos theta-cos2 theta,y=sin theta-sin2 theta then (dy)/(dx) is

If x=2cos theta -cos 2theta ,y=2sin theta -sin 2theta ,then (dy)/(dx) =

If x=-a(theta-sin theta),y=a(1-cos theta), then (dy)/(dx) is

x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta

If x = sin theta - cos theta and y = sin theta + cos theta , then (dy)/(dx) =

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If (sin theta)/(x)=(cos theta)/(y) then sin theta-cos theta