Home
Class 12
MATHS
A square piece of tin of side 18 cm i...

A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Also, find the maximum volume.

A

2 cm ,430 `cm^(3)`

B

5 cm ,425 `cm^(3)`

C

3 cm , 432 `cm^(3)`

D

3 cm ,423 `cm^(3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY3 : One or More than One Option Correct Type (2 Marks)|15 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1: Single Option correct Type (1 Mark))|15 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|11 Videos
  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 2 : Single Option Correct Type (2 Mark ) )|5 Videos
  • APPLICATION OF INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|3 Videos

Similar Questions

Explore conceptually related problems

A square piece of tin of side 24 cm is to be made into a box without top by cutting a square from each corner and foding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum ? Also, find this maximum volume.

A square piece of tin of side 18cm is to be made into a box without top,by cutting a square from each corner and folding up the flaps to form the box.What should be the side of the square to be cut off so that the volume of the box is the maximum possible?

A square piece of tin of side 12 cm is to be made into a box without a lid by cutting a square from each corner and folding up the flaps to form the sides. What should be the side of the square to be cut off so that the volume of the box is maximum ? Also, find this maximum volume

A square piece of tin of side 24 cm is to be made into a box without top by cutting a square from each and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum ? Also, find the maximum volume.

A rectangular sheet of tin 45cm by 24cm is to be made into a box without top,by cutting off square from each corner and folding up the flaps.What should be the side of the square to be cut off so that the volume of the box is maximum?

A rectangular sheet of tin 45cm by 24cm is to be made into a box without top,by cutting off squares from each corners and folding up the flaps.What should be the side of the square to be cut off so that the volume of the box is maximum possible?

An open box is to be made of square sheet of tin with side 20 cm, by cutting off small squares from each corner and foding the flaps. Find the side of small square, which is to be cut off, so that volume of box is maximum.

A rectangular sheet of tin 58 cmxx44cm is to be made into an open box by cutting off equal squares from the corners and folding up the flaps.What should be the volume of box if the surface area of box is 2452 cm^(2) ?

A rectangular piece of cardboard 18cm xx24cm is made into an open box by cutting a square of 5cm side from each corner and building up the side.Find the volume of the box in cu.cm.(a) 216 (b) 432 (c) 560 (d) None of these

A box is to be made from a sheet 12times12 sq.cm, by cutting equals squares from the four corners and turning up its sides. Find the length of the side of the square to be cut out, in order to obtain a box of the largest possible volume?