Home
Class 12
MATHS
The curve y=ax^(3)+bx^(2)+cx is inclined...

The curve `y=ax^(3)+bx^(2)+cx` is inclined at `45^(@)` to x-axis at `(0,0)` but it touches x-axis at `(1,0)`, then

A

f'(1)=0

B

f"(1)=2

C

f'''(2)=12

D

f(2)=2

Text Solution

Verified by Experts

The correct Answer is:
A, B, D
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1: Single Option correct Type (1 Mark))|15 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 2 : Single Option correct Type (2 Marks))|9 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks) )|15 Videos
  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 2 : Single Option Correct Type (2 Mark ) )|5 Videos
  • APPLICATION OF INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|3 Videos

Similar Questions

Explore conceptually related problems

If the curve y=ax^(3) +bx^(2) +c x is inclined at 45^(@) to x-axis at (0, 0) but touches x-axis at (1, 0) , then

The curve y=ax^(3)+bx^(2)+cx is inclined by 45^(@) to x-axis at origin and it touches x-axis at (1,0). Then

The curve y=f(x)=ax^(3)+bx^(2)+cx is inclined at 45^(@) to positive direction of x -axis at (0,0), but it touches x -axis at (1,0) then value of ((f''(1)*f''(2))/(2f(2))) is

The curve y = ax ^(3) + bx ^(2) + cx + 5 touches the x-axis at P (-2, 0) and cuts the y-axis at a point Q where its gradient is 3, then 2a + 4b is equal to :

The curve y=ax^(3)+bx^(2)+cx+5 touches the x -axis at P(-2,0) and cuts the y-axis at the point Q where its gradient is 3. Find the equation of the curve completely.

A curve with equation of the form y=ax^(4)+bx^(3)+cx+d has zero gradient at the point (0,1) and also touches the x-axis at the point (-1,0) then a=3 (b) b=4c+d=1 for x<-1, the curve has a negative gradient

A curve with equation of the form y=ax^(4)+bx^(3)+cx+d has zero gradient at the point (0,1) and also touches the x -axis at the point (-1,0) then a=3 b.b=4 c.c+d=1 d.for x<-1, the curve has a negative gradient

A curve with equation of the form y=ax^(4)+bx^(3)+cx+d has zero gradient at the point (0,1) and also touches the x- axis at the point (-1,0) then the value of x for which the curve has a negative gradient are: a.x>=-1 b.x<1 c.x<-1 d.-1<=x<=1

The curve x^(2)+2xy-y^(2)-x-y=0 cuts the x -axis at (0,0) at an angle