Home
Class 12
MATHS
Let exp (x) denotes the exponetial funct...

Let exp (x) denotes the exponetial function `e^(x)` . If f(x) = exp`(x^(1//x),x gt0` then the minimum value of f in the interval [2,5] is

A

`exp(e^((1)/(e)))`

B

`exp(2^((1)/(2)))`

C

`exp(5^((1)/(5)))`

D

`exp(e^((2)/(e)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) = e^{(x^{1/x})} \) in the interval \([2, 5]\), we will proceed step by step. ### Step 1: Define the function We start with the function: \[ f(x) = e^{(x^{1/x})} \] To find the minimum value, we first need to analyze the exponent \( h(x) = x^{1/x} \). ### Step 2: Differentiate \( h(x) \) To find the critical points of \( h(x) \), we will differentiate it. First, we take the natural logarithm: \[ \ln(h(x)) = \frac{1}{x} \ln(x) \] Now, differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\ln(h(x))) = \frac{d}{dx}\left(\frac{\ln(x)}{x}\right) \] Using the quotient rule: \[ \frac{d}{dx}\left(\frac{\ln(x)}{x}\right) = \frac{x \cdot \frac{1}{x} - \ln(x)}{x^2} = \frac{1 - \ln(x)}{x^2} \] Thus, we have: \[ \frac{h'(x)}{h(x)} = \frac{1 - \ln(x)}{x^2} \] This gives us: \[ h'(x) = h(x) \cdot \frac{1 - \ln(x)}{x^2} \] ### Step 3: Find critical points Set \( h'(x) = 0 \): \[ h(x) \cdot \frac{1 - \ln(x)}{x^2} = 0 \] Since \( h(x) \) is never zero for \( x > 0 \), we set: \[ 1 - \ln(x) = 0 \implies \ln(x) = 1 \implies x = e \] ### Step 4: Evaluate \( h(x) \) at critical points and endpoints Now we will evaluate \( h(x) \) at the endpoints of the interval \([2, 5]\) and at the critical point \( x = e \). 1. **At \( x = 2 \)**: \[ h(2) = 2^{1/2} = \sqrt{2} \approx 1.414 \] 2. **At \( x = 5 \)**: \[ h(5) = 5^{1/5} \approx 1.379 \] 3. **At \( x = e \)** (approximately 2.718): \[ h(e) = e^{1/e} \approx 1.445 \] ### Step 5: Compare values Now we compare the values of \( h(x) \): - \( h(2) \approx 1.414 \) - \( h(5) \approx 1.379 \) - \( h(e) \approx 1.445 \) The minimum value of \( h(x) \) in the interval \([2, 5]\) occurs at \( x = 5 \). ### Step 6: Find the minimum value of \( f(x) \) Since \( f(x) = e^{h(x)} \), we need to find: \[ f(5) = e^{h(5)} = e^{5^{1/5}} \approx e^{1.379} \] ### Conclusion Thus, the minimum value of \( f(x) \) in the interval \([2, 5]\) is: \[ f(5) = e^{5^{1/5}} \approx e^{1.379} \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 2 : Single Option correct Type (2 Marks))|9 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|11 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY3 : One or More than One Option Correct Type (2 Marks)|15 Videos
  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 2 : Single Option Correct Type (2 Mark ) )|5 Videos
  • APPLICATION OF INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|3 Videos

Similar Questions

Explore conceptually related problems

Given the function f(x) = x^(2) e^(-2x), x gt 0 . Then f(x) has the maximum value equal to

If x in[-8,0] ,then the minimum value of the function f(x)=e^(x)-|x|-1 ,is

Let f(x)=x+(1)/(x),xne0. Discuss the maximum and minimum value of f(x).

Let f(x) be the continuous function such that f(x)= (1-e^(x))/(x) for x!=0 then

Let f be a twice differentiable function defined on R such that f(0) = 1, f'(0) = 2 and f '(x) ne 0 for all x in R . If |[f(x)" "f'(x)], [f'(x)" "f''(x)]|= 0 , for all x in R , then the value of f(1) lies in the interval:

The function f(x)=x^(2)e^(x) has minimum value