Home
Class 12
MATHS
Let f(x) =sinx +2 cos^(2)x (pi)/(4)lt=x ...

Let f(x) =sinx +`2 cos^(2)x (pi)/(4)lt=x lt= (3pi)/(4)` . Then f attains its

A

minimum at `x=(pi)/(4)`

B

maximum at x=`(pi)/(2)`

C

minimum at `x=(pi)/(2)`

D

maximum at x `=sin^(-1)((1)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum and minimum values of the function \( f(x) = \sin x + 2 \cos^2 x \) over the interval \( \left[\frac{\pi}{4}, \frac{3\pi}{4}\right] \). ### Step 1: Differentiate the function We start by finding the first derivative of the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(\sin x) + \frac{d}{dx}(2 \cos^2 x) \] Using the chain rule for the second term: \[ f'(x) = \cos x + 2 \cdot 2 \cos x (-\sin x) = \cos x - 4 \sin x \cos x \] Thus, we have: \[ f'(x) = \cos x (1 - 4 \sin x) \] ### Step 2: Set the derivative to zero To find the critical points, we set the first derivative equal to zero: \[ \cos x (1 - 4 \sin x) = 0 \] This gives us two cases: 1. \( \cos x = 0 \) 2. \( 1 - 4 \sin x = 0 \) ### Step 3: Solve for critical points **Case 1:** \( \cos x = 0 \) In the interval \( \left[\frac{\pi}{4}, \frac{3\pi}{4}\right] \), \( \cos x = 0 \) at: \[ x = \frac{\pi}{2} \] **Case 2:** \( 1 - 4 \sin x = 0 \) Solving for \( \sin x \): \[ 4 \sin x = 1 \implies \sin x = \frac{1}{4} \] Now we find \( x \) for \( \sin x = \frac{1}{4} \) in the interval \( \left[\frac{\pi}{4}, \frac{3\pi}{4}\right] \). ### Step 4: Evaluate the second derivative Next, we need to determine whether these critical points are maxima or minima by using the second derivative test. First, we find the second derivative \( f''(x) \): \[ f''(x) = -\sin x - 4(\cos^2 x - \sin^2 x) \] ### Step 5: Evaluate the second derivative at critical points **At \( x = \frac{\pi}{2} \):** \[ f''\left(\frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right) - 4(\cos^2\left(\frac{\pi}{2}\right) - \sin^2\left(\frac{\pi}{2}\right)) = -1 - 4(0 - 1) = -1 + 4 = 3 \] Since \( f''\left(\frac{\pi}{2}\right) > 0 \), this point is a local minimum. **At \( x = \sin^{-1}\left(\frac{1}{4}\right) \):** We need to evaluate \( f''(x) \) at this point, but we can also use the first derivative test to check the sign of \( f'(x) \) around this point. ### Step 6: Evaluate the function at the endpoints and critical points Now we evaluate \( f(x) \) at the endpoints and critical points: 1. \( f\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) + 2\cos^2\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + 2\left(\frac{\sqrt{2}}{2}\right)^2 = \frac{\sqrt{2}}{2} + 1 = \frac{\sqrt{2}}{2} + 1 \) 2. \( f\left(\frac{3\pi}{4}\right) = \sin\left(\frac{3\pi}{4}\right) + 2\cos^2\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2} + 2\left(-\frac{\sqrt{2}}{2}\right)^2 = \frac{\sqrt{2}}{2} + 1 = \frac{\sqrt{2}}{2} + 1 \) 3. \( f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) + 2\cos^2\left(\frac{\pi}{2}\right) = 1 + 0 = 1 \) 4. \( f\left(\sin^{-1}\left(\frac{1}{4}\right)\right) \) needs to be computed but will yield a value less than \( 1 \). ### Conclusion From evaluating these points, we can conclude: - The minimum value occurs at \( x = \frac{\pi}{2} \). - The maximum value occurs at \( x = \sin^{-1}\left(\frac{1}{4}\right) \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 2 : Single Option correct Type (2 Marks))|9 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|11 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY3 : One or More than One Option Correct Type (2 Marks)|15 Videos
  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 2 : Single Option Correct Type (2 Mark ) )|5 Videos
  • APPLICATION OF INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = log (sin x+ cos x), x in x (-pi/4,(3pi)/(4)) Then f is stricly increasing in the interval

If cos x + sin x = a (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

cos^(-1)((sin x+cos x)/(sqrt(2))),(pi)/(4) lt x lt (5pi)/4

Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.

f(x)=cos2x, interval [-(pi)/(4),(pi)/(4)]

If cos x-sinx=-(5)/(4) , where (pi)/(2)ltx lt(3pi)/(4) , then cot((x)/(2)) is equal to

The function f(x) = sin ^(4)x+ cos ^(4)x increases, if (A) 0 lt x lt (pi)/(8) (B) (pi)/(4) lt x lt (3pi)/(8) (C) ( 3pi)/(8) lt x lt (5pi)/(8) (D) ( 5pi)/(8) lt x lt(3pi)/(4)

Let f(x)=(cos x -sinx)/(cos 2x)+ sin^2x , x ne pi/4 . The value of f(pi//4) so that f is continuous on (0,pi//2) is (sqrt2=1.41)