Home
Class 12
MATHS
The differential equation of y= e^(2x) (...

The differential equation of `y= e^(2x) (A cos mx +B sin mx)` is

A

`(d^(2)y)/(dx^(2))-y (dy)/(dx) + (4 + m^(2))y= 0`

B

`(d^(2)y)/(dx^(2)) +y(dy)/(dx) + (4+m^(2))y=0`

C

`(d^(2)y)/(dx^(2)) +y(dy)/(dx)-(4+m^(2))y=0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential equation for the function \( y = e^{2x}(A \cos(mx) + B \sin(mx)) \), we will differentiate it twice and eliminate the constants \( A \) and \( B \). ### Step 1: Differentiate \( y \) to find \( \frac{dy}{dx} \) Given: \[ y = e^{2x}(A \cos(mx) + B \sin(mx)) \] Using the product rule: \[ \frac{dy}{dx} = \frac{d}{dx}(e^{2x}) \cdot (A \cos(mx) + B \sin(mx)) + e^{2x} \cdot \frac{d}{dx}(A \cos(mx) + B \sin(mx)) \] Calculating \( \frac{d}{dx}(e^{2x}) \): \[ \frac{d}{dx}(e^{2x}) = 2e^{2x} \] Calculating \( \frac{d}{dx}(A \cos(mx) + B \sin(mx)) \): \[ \frac{d}{dx}(A \cos(mx) + B \sin(mx)) = -Am \sin(mx) + Bm \cos(mx) \] Putting it all together: \[ \frac{dy}{dx} = 2e^{2x}(A \cos(mx) + B \sin(mx)) + e^{2x}(-Am \sin(mx) + Bm \cos(mx)) \] Factoring out \( e^{2x} \): \[ \frac{dy}{dx} = e^{2x}\left(2(A \cos(mx) + B \sin(mx)) + (-Am \sin(mx) + Bm \cos(mx))\right) \] ### Step 2: Simplify \( \frac{dy}{dx} \) Combining the terms: \[ \frac{dy}{dx} = e^{2x}\left((2B + Bm) \cos(mx) + (2A - Am) \sin(mx)\right) \] ### Step 3: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(e^{2x}\left((2B + Bm) \cos(mx) + (2A - Am) \sin(mx)\right)\right) \] Using the product rule again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(e^{2x})\left((2B + Bm) \cos(mx) + (2A - Am) \sin(mx)\right) + e^{2x}\frac{d}{dx}\left((2B + Bm) \cos(mx) + (2A - Am) \sin(mx)\right) \] Calculating \( \frac{d}{dx}(e^{2x}) \): \[ \frac{d}{dx}(e^{2x}) = 2e^{2x} \] The derivative of the trigonometric part: \[ \frac{d}{dx}\left((2B + Bm) \cos(mx) + (2A - Am) \sin(mx)\right) = -m(2B + Bm) \sin(mx) + m(2A - Am) \cos(mx) \] Putting it all together: \[ \frac{d^2y}{dx^2} = 2e^{2x}\left((2B + Bm) \cos(mx) + (2A - Am) \sin(mx)\right) + e^{2x}\left(-m(2B + Bm) \sin(mx) + m(2A - Am) \cos(mx)\right) \] ### Step 4: Combine all terms Factoring out \( e^{2x} \): \[ \frac{d^2y}{dx^2} = e^{2x}\left(2(2B + Bm) \cos(mx) + 2(2A - Am) \sin(mx) - m(2B + Bm) \sin(mx) + m(2A - Am) \cos(mx)\right) \] ### Step 5: Form the differential equation Now we have: 1. \( y = e^{2x}(A \cos(mx) + B \sin(mx)) \) 2. \( \frac{dy}{dx} = e^{2x}\left((2B + Bm) \cos(mx) + (2A - Am) \sin(mx)\right) \) 3. \( \frac{d^2y}{dx^2} = e^{2x}\left(\text{combined terms}\right) \) We can eliminate \( A \) and \( B \) to form the differential equation: \[ \frac{d^2y}{dx^2} - 4\frac{dy}{dx} + (m^2 + 4)y = 0 \] ### Final Differential Equation \[ \frac{d^2y}{dx^2} - 4\frac{dy}{dx} + (m^2 + 4)y = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos

Similar Questions

Explore conceptually related problems

cos mx = sin nx

The differential equation of the curve y=e^(x) (a cos x + b sin x) representing the given family of curves where a and b are costants , is

verify that the given function is a solution of the differential equations : y''+y=0, y = A cos x - B sin x .

Form differential equation for y=mx+c

verify that the given function is a solution of the differential equations : y''+4y=0, y = A cos 2x-B sin 2x .

Find out the differential equation of y=A cos x^(2)+B sin x^(2)

The differential equation for which y=a cos x+b sin x is a solution is

The differential equation for which y=a cos x+b sin x is a solution, is

from the differential equation by eliminating the arbitrary constants from the following equations : (1) y= e^(x) (A cos x + B sin x)

MTG-WBJEE-DIFFERENTIAL EQUATIONS-WB JEE Previous Years Questions
  1. The differential equation of y= e^(2x) (A cos mx +B sin mx) is

    Text Solution

    |

  2. If sqrty=cos^-1x, then it satisfies the dIfferential equation (1-x^2)(...

    Text Solution

    |

  3. The integrating factor of the differential equaion (1+x^(2))(dy)/(dx)+...

    Text Solution

    |

  4. The solution of the differential equation y"dy"/"dx"=x[y^2/x^2 + (phi(...

    Text Solution

    |

  5. The curve y=(cosx+y)^(1/2) satisfies the differential equation :

    Text Solution

    |

  6. If y=e^-x cos2x then which of the following differential equations is ...

    Text Solution

    |

  7. The integrating factor of the differential equation (dy)/(dx)+(3x^2tan...

    Text Solution

    |

  8. If the solution of the differential equation x(dy)/(dx) +y = xe^(x) "b...

    Text Solution

    |

  9. The order of the differential equation of all parabols whose axis of s...

    Text Solution

    |

  10. General solution of (x+y)^(2) (dy)/(dx)= a^(2), a ne 0 is (c is an arb...

    Text Solution

    |

  11. The integrating factor of the first order differential equation x^2(x^...

    Text Solution

    |

  12. The differential equation representing the family of curves y^(2)= 2d ...

    Text Solution

    |

  13. Let y(x) be a solution of (1+x^2)"dy"/"dx"+2xy-4x^2=0 and y(0)=-1 Th...

    Text Solution

    |

  14. Solution of the differential equation (1+e^(x/y))dx + e^(x/y)(1-x/y)dy...

    Text Solution

    |

  15. The solution of the differential equation (y^(2)+2x) (dy)/(dx)=y satis...

    Text Solution

    |

  16. The solution of the differential equation y sin (x//y) dx= (x sin (x//...

    Text Solution

    |

  17. The solution of the differential equation (dy)/(dx) + (y)/(x log(e)x)=...

    Text Solution

    |

  18. General solution of y(dy)/(dx) + by^(2)=a cos x, 0 lt x lt 1 is

    Text Solution

    |

  19. If u(x) and v(x) are two independent solution of the differential equa...

    Text Solution

    |

  20. If cos x and sinx are the solution of differential equation ao (d^2y)/...

    Text Solution

    |