Home
Class 12
MATHS
logx 2xlt=sqrt(logx(2x^3))...

`log_x 2xlt=sqrt(log_x(2x^3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(x)2x<=sqrt(log_(x)(2x^(3)))

Product of all the solution of equation x^(log_(10)x)=(100+2^(sqrt(log_(2)3))-3sqrt(log_(3)2))x is

If log_(2x)20sqrt(6)=log_(3x)90, then characteristic of log _(5)x^(3) is equal to

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

If x gt 0, and log_(2) + log_(2)(sqrt(x)) + log_(2) (4sqrt(x)) + log_(2) ( 8sqrt(x)) + log_(2) (16sqrt(x)) + ….. = 4 then x =

Solve log_(x)3+log_(3)x=log_(sqrt(3))x+log_(3)sqrt(x)+(1)/(2)

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot