Home
Class 11
MATHS
यदि किसी समबाहु त्रिभुज के शीर्ष ...

यदि किसी समबाहु त्रिभुज के शीर्ष ` z _ 1, z _ 2 , z _ 3 ` हो ताकि ` |z_ 1 | = |z _ 2 | = |z _ 3| ` तो साबित करे ` z _ 1 + z _ 2 + z _ 3 = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_(1)| = |z_(2)| = |z_(3)| = … |z_(n)| = 1 , then |z_(1) + z_(2) + z_(3) + ….. + z_(n) | =

If z_(1) + z_(2) + z_(3) = 0 and |z_(1)| = |z_(2)| = |z_(3)| = 1 , then value of z_(1)^(2) + z_(2)^(2) + z_(3)^(2) equals

If z_1 = 4 - 7i , z_2 = 2 + 3i and z_3 = 1 + i show that z_1 + (z_2 + z_3) = (z_1 + z_2)+z_3

If z_(1) = 3, z_(2) = -7i, and z_(3) = 5 + 4i, show that (z_(1) + z_(2)) z_(3) = z_(1) z_(3) + z_(2) z_(3)

If 2z_1-3z_2 + z_3=0 , then z_1, z_2 and z_3 are represented by

If | z_(1) | = 1, |z_(2)| = 2, |z_(3)| = 3 and |9z_(1)z_(2) + 4z_(1) z_(3) + z_(2) z_(3) = 12|, then the value of |z_(1) + z_(2) + z_(3)| is

If z_(1) = 1 - 3i, z_(2) = -4i and z_(3) = 5, show that (z_(1) + z_(2)) + z_(3) = z_(1) + (z_(2) + z_(3))