Home
Class 11
MATHS
Prove that cos ((pi)/(4) + x) + cos ((...

Prove that
`cos ((pi)/(4) + x) + cos ((pi)/(4) -x) = sqrt2 cos x`

Text Solution

Verified by Experts

The correct Answer is:
`sqrt2 cos x = R.H.S.`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT TAMIL|Exercise EXERCISE 3.1|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT TAMIL|Exercise EXERCISE 3.2|10 Videos
  • STRAIGHT LINES

    NCERT TAMIL|Exercise Miscellaneous Exercise on Chapter 10|24 Videos
  • TRIGONOMETRY

    NCERT TAMIL|Exercise EXERCISE 3.12|20 Videos

Similar Questions

Explore conceptually related problems

Prove that cos ((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt2 sin x

Prove that cos (pi/4-x) cos (pi/4-y)- sin (pi/4-x) sin(pi/4-y) =sin (x+y)

Prove that 32 (sqrt(3)) sin"" (pi)/(48) cos"" (pi)/(48) cos"" (pi)/(24) cos"" (pi)/(12) cos"" (pi)/(6) = 3

Prove that cos^(2)x + cos^(2)(x + (pi)/(3)) + cos^(2) (x - (pi)/(3)) = (3)/(2)

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x

If x cos theta = y cos (theta + (2pi)/(3)) = z cos (theta + (4pi)/(3)) , find the value of xy + yz + zx

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))