Home
Class 12
MATHS
underset(x rarr 1^(-))(lim) (sqrtpi -sqr...

`underset(x rarr 1^(-))(lim) (sqrtpi -sqrt(2 sin^(-1)x))/(sqrt(1-x))` बराबर है

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(x to 1-) (sqrtpi-sqrt(2 sin^(-1) x))/sqrt(1-x) is equal to

underset( x rarr ( pi )/( 4))("Lim")(sqrt( 1- sqrt( sin x)))/(pi - 4x)

underset(xrarr0)lim (sqrt(1+x^2)-sqrt(1+x))/(sqrt(1+x^2)+sqrt(1+x))

The value of lim_(xrarr1^(-))(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to