Home
Class 12
MATHS
If y= (1+ tan A) (1- tan B) where A-B =p...

If `y= (1+ tan A) (1- tan B)` where `A-B =pi/4,` then the value of `(y+1) ^(y+1)` is-

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = (1 + tan A) (1 - tan B), where A -B=pi/4 then (y+ 1)^(y + 1) is equal to

If y = (1 + tan A) (1 - tan B), where A -B=pi/4 then (y+ 1)^(y + 1) is equal to ............ A) 9 B) 4 C) 27 D) 81

If y=(1+tan A)(1-tan B), where A-B=(pi)/(4), then (y+1)^(y+1) is equal to 9 (b) 4(c)27(d)81

13.If y=(1+tan A)(1-tan B), where A-B=(pi)/(4) then (y+1)^(y+1) is equal to

Ify = (1 + tan.4) (1-tan B), where AB = (pi) / (4) (y + 1) ^ (y + 1) i sequalt

If tan^-1 x + tan^-1y = pi/4, xy < 1, then write the value of x +y + xy.

If tan^(-1)x+tan^(-1)y=pi/4, then write the value of x+y+x ydot

If tan^(-1)x+tan^(-1)y=pi/4, then write the value of x+y+x ydot

If A-B=pi/4quad y=(1+tan A)(1-tan B) then value of (y)^(y+1)=