Home
Class 12
MATHS
If f(x+y+z)=f(x) f(y) f(z) ne 0for all x...

If `f(x+y+z)=f(x) f(y) f(z) ne 0`for all x,y,z and f(2)=5, f'(0)=2, find f'(2).

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x+y+z)=f(x)f(y)f(z)ne0 , for all x, y, z and f(2)=4,f'(0)=3 , find f'(2) .

If f(x+y)=f(x)f(y) for all x,yinR and f(5)=4 and f'(0)=2 , then find f'(5)

If f(x+y) = f(x) * f(y) for all real x and y and f(5)=2,f'(0) = 3 , find f'(5).

If f(x+y)=f(x) xx f(y) for all x,y in R and f(5)=2, f'(0)=3, then f'(5)=

If f(x+y)=f(x). f(y) for all x and y and f(5)=2, f'(0)=4, then f '(5) will be

let f(x) be the polynomial function. It satisfies the equation 2 +f(x)* f(y) = f(x) + f(y) +f(xy) for all x and y. If f(2) =5 find f|f(2)| .

f(x+y)=f(x)*f(y) for all x,y anf f(5)=2,f'(0)=3 then f(5) will be

f(x+y)=f(x).f(y) for all x,yinR and f(5)=2,f'(0)=3 then f'(5) is equal to

If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne 0, then