Home
Class 12
MATHS
Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,...

Prove that: `tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0-pi/2,ifx<0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0, -pi/2 if x<0

Prove that tan^(-1)x +tan^(-1)""1/x={{:(pi//2,"if " x gt 0),(-pi//2," if " x lt 0):}

prove that tan^(-1)x+cot^(-1)x=pi/2

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

Prove that tan^(-1) x + tan ^(-1). 1/x = {{:(pi//2", if " x gt 0),(-pi//2", if "x lt 0 ):} .

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

tan^(-1)x+tan^(-1)(1)/(x)={[(pi)/(2), if x>0-(pi)/(2), if x<0