Home
Class 12
MATHS
If x=sqrt( a^(sin^(-1)t)) and y=sqrt( a^...

If `x=sqrt( a^(sin^(-1)t)) and y=sqrt( a^(cos^(-1)t))` find dy/dx

Promotional Banner

Similar Questions

Explore conceptually related problems

For a gt 0, t in (0, (pi)/(2)) . Let x= sqrt(a^(sin^(-1)t)) and y= sqrt(a^(cos^(-1)t)), then 1+((dy)/(dx))^(2) equals.

If x= sqrt ( a^( sin^(-1) t) ) and y= sqrt ( a^( cos^(-1) t) ), then show that dy/dx = -(y/x)

If x=sqrt(a^(sin^(-1)t)" and "y=sqrt(a^(cos^(-1)t) show that (dy)/(dx)=-(y)/(x) .

If x = sqrt(a^(sin^(-1)t)) and y= sqrt(a^(cos^(-1)t) show that (dy)/(dx)= -y/x .

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , Show that (dy)/(dx)=-y/x .

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos^(-1)t)) show that (dy)/(dx)=-(y)/(x)

If x=sqrt(a^(sin^-1t)) , y=sqrt(a^(cos^-1t)) , then (dy)/(dx)=.........